BZOJ1492 [NOI2007]货币兑换

58 篇文章 0 订阅

Address

Solution

  • 因为傻逼错误调了一下午。
  • 有一个贪心策略:每次买入或卖出时都是全部买入或全部卖出。
  • 于是分别设 f i , x i , y i f_i,x_i,y_i fi,xi,yi 表示到第 i i i 天时的最大收益、最多能购买的 A A A 劵数量、最多能购买的 B B B 劵数量,则转移为: f i = max ⁡ j = 1 i − 1 { f i − 1 , A i × x j + B i × y j } f_i = \max\limits^{i - 1}_{j = 1}\{f_{i - 1}, A_i \times x_j + B_i \times y_j\} fi=j=1maxi1{fi1,Ai×xj+Bi×yj} y i = f i A i × R a t e i + B i y_i = \frac{f_i}{A_i \times Rate_i + B_i} yi=Ai×Ratei+Bifi x i = R a t e i × y i x_i = Rate_i \times y_i xi=Ratei×yi
  • 时间复杂度 O ( N 2 ) O(N^2) O(N2),不能通过。
  • x i , y i x_i, y_i xi,yi 只由 f i f_i fi 确定,考虑怎样优化 f i f_i fi 的转移。
  • 先不管转移中的 f i − 1 f_{i - 1} fi1 m a x max max,则有: f i = A i × x j + B i × y j f_i = A_i \times x_j + B_i \times y_j fi=Ai×xj+Bi×yj
  • 选择两个含 j j j 的不同项,分别移到等式两边,并使右边含 j j j 的项系数为1,把只含 i i i 的项移到左边: − A i B i × x j + f i B i = y j - \frac{A_i}{B_i} \times x_j + \frac{f_i}{B_i} = y_j BiAi×xj+Bifi=yj
  • 因为要使 f i f_i fi 最大,即为让一条斜率为 − A i B i -\frac{A_i}{B_i} BiAi 的直线经过点 ( x j , y j ) (x_j, y_j) (xj,yj),使得它的截距( f i B i \frac{f_i}{B_i} Bifi)最大。
  • 通过画图我们可以发现,最优解必然在点 ( x j , y j ) (x_j, y_j) (xj,yj) 构成的上凸壳上(如果取最小就是下凸壳),并且最优解的 j j j 即满足它与它在凸壳上的上一个点所在直线的斜率大于 − A i B i -\frac{A_i}{B_i} BiAi,它与它在凸壳上的下一个点所在直线的斜率小于 − A i B i -\frac{A_i}{B_i} BiAi
  • 然而这题 x j , y j x_j, y_j xj,yj 都不递增,不能用单调队列或者二分来维护。
  • S p l a y Splay Splay 大法好!
  • x j x_j xj 的大小在 S p l a y Splay Splay 上排好顺序,记录 l k i , r k i lk_i, rk_i lki,rki分别表示与凸壳上一个点和下一个点所在直线的斜率。
  • 查找最优解只要在 S p l a y Splay Splay 上走,主要要解决的是如何动态插入一个点 x x x
  • 同样考虑二分,能作为 x x x 在凸壳上的上一个点 y y y 要满足这两点所在直线的斜率小于 l k y lk_y lky,并且 y y y 要取到最大, x x x 在凸壳上的下一个点同理。
  • 若插入后 l k x &lt; r k x lk_x &lt; rk_x lkx<rkx,点 x x x 在凸壳内,直接把点 x x x 删除。
  • 注意精度问题,时间复杂度 O ( 均 摊 n log ⁡ n ) O(均摊 n \log n) O(nlogn)

Code

  • 数据中似乎不用考虑点在凸壳内的情况。
  • 两个地方把 x 写成 y 还有 90pts。
  • 这数据到底有多水……
#include <iostream>
#include <cstdio>
#include <cctype>
#include <algorithm>
#include <cstring>
#include <cstdlib>

using namespace std;

const double eps = 1e-9;
const double feps = -1e-9;
const double inf = 1e15;
const double finf = -1e15;
const int N = 1e5 + 5;
double lk[N], rk[N], f[N], vx[N], vy[N];
int n, T, rt, lc[N], rc[N], fa[N];

inline double Max(double x, double y) {return x + eps >= y ? x : y;}

inline bool Which(int x) {return lc[fa[x]] == x;}

inline void Rotate(int x)
{
	int y = fa[x], z = fa[y],
		b = lc[y] == x ? rc[x] : lc[x];
	if (z) (lc[z] == y ? lc[z] : rc[z]) = x;
	fa[x] = z; fa[y] = x;
	if (b) fa[b] = y;
	if (lc[y] == x) rc[x] = y, lc[y] = b;
		else lc[x] = y, rc[y] = b;
}

inline void Splay(int x, int tar)
{
	while (fa[x] != tar)
	{
		if (fa[fa[x]] != tar)
			Which(fa[x]) == Which(x) ? Rotate(fa[x]) : Rotate(x);
		Rotate(x);
	}
	if (!tar) rt = x;
}

inline double Slope(int x, int y)
{
	if (vx[x] - vx[y] <= eps && vx[x] - vx[y] >= feps) 
		return finf;
	return (vy[y] - vy[x]) / (vx[y] - vx[x]);
}

inline int findLeft(int x, int y)
{
	int res = x;
	while (x)
	{
		if (lk[x] + eps >= Slope(x, y)) res = x, x = rc[x];
			else x = lc[x];
	}
	return res;
}

inline int findRight(int x, int y)
{
	int res = x;
	while (x)
	{
		if (rk[x] <= Slope(y, x) + eps) res = x, x = lc[x];
			else x = rc[x];
	}
	return res;
}
 
inline void Insert()
{
	int x = rt, y = 0, dir; ++T;
	while (x)
	{
		y = x;
		if (vx[T] <= vx[x] + eps) x = lc[x], dir = 0;
			else x = rc[x], dir = 1;
	}
	fa[x = T] = y;
	if (y) (dir ? rc[y] : lc[y]) = x;
	Splay(x, 0); 
	if (lc[x])
	{
		int z = findLeft(lc[x], x);
		Splay(z, x); fa[rc[z]] = rc[z] = 0; 
		rk[z] = lk[x] = Slope(z, x); 
	}
	
	if (rc[x])
	{
		int z = findRight(rc[x], x);
		Splay(z, x); fa[lc[z]] = lc[z] = 0;
		lk[z] = rk[x] = Slope(x, z);
	}
	
	if (lk[x] <= rk[x] + eps)
	{
		rt = lc[x]; rc[rt] = rc[x];
		fa[rc[x]] = rt; fa[rt] = 0;
		lc[x] = rc[x] = fa[x] = 0;
		rk[rt] = lk[rc[rt]] = Slope(rt, rc[rt]);
	}
}

inline int Query(double v)
{
	int x = rt, res = 0;
	while (x)
	{
		if (lk[x] + eps >= v) res = x, x = rc[x];
			else x = lc[x];
	}
	return res;
}

int main()
{
	scanf("%d%lf", &n, &f[0]); double a, b, r;
	for (int i = 1; i <= n; ++i)
		lk[i] = inf, rk[i] = finf;
	
	for (int i = 1; i <= n; ++i)
	{ 
		scanf("%lf%lf%lf", &a, &b, &r);
		int j = Query(-a / b);
		f[i] = Max(f[i - 1], a * vx[j] + b * vy[j]);
		vy[i] = f[i] / (a * r + b);
		vx[i] = vy[i] * r; Insert();
	}
	
	printf("%.3lf\n", f[n]);
} 
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值