ZCMU1398 工程
Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。 现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。 每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。 接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。 再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
思路
典型的Floyd算法求最短路径
//Floyd-Warshaall
for(int k=0;k<n;k++)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(e[i][k]+e[k][j]<e[i][j]) e[i][j]=e[i][k]+e[k][j];
}
}
}
注意
城镇从0开始而不是1。
城市与城市之间是双向道路,因此读入边时eij=k时也要进行eji=k这步操作。
代码
#include <bits/stdc++.h>
using namespace std;
const int inf=99999;
int e[201][201];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
//初始化
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(i==j) e[i][j]=0;
else e[i][j]=inf;
}
}
//读入边
for(int i=0;i<m;i++)
{
int a,b,x;
scanf("%d %d %d",&a,&b,&x);
e[a][b]=x;
e[b][a]=x;
}
//Floyd-Warshaall
for(int k=0;k<n;k++)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
//printf("e[%d][%d]==%d\n",i,j,e[i][j]);
if(e[i][k]+e[k][j]<e[i][j]) e[i][j]=e[i][k]+e[k][j];
}
}
}
int s,t;
scanf("%d %d",&s,&t);
if(e[s][t]!=inf)
printf("%d\n",e[s][t]);
else
printf("-1\n");
}
return 0;
}