文章三《机器学习基础概念与框架实践》


文章3:机器学习基础概念与框架实践

——从理论到代码,用Scikit-learn构建你的第一个分类模型


一、机器学习基础理论:三大核心类型

机器学习是人工智能的核心,通过数据让计算机自动学习规律并做出预测或决策。根据学习方式,可分为三类:

1. 监督学习(Supervised Learning)
  • 定义:有标签的数据(输入-输出对)训练模型,预测未知数据的标签。
  • 典型任务:分类(如垃圾邮件识别)、回归(如房价预测)。
  • 算法示例:线性回归、决策树、支持向量机(SVM)。
2. 无监督学习(Unsupervised Learning)
  • 定义:无标签数据,通过发现数据内在结构进行聚类或降维。
  • 典型任务:客户分群、图像压缩。
  • 算法示例:K-means聚类、主成分分析(PCA)。
3. 强化学习(Reinforcement Learning)
  • 定义:通过试错,让智能体在环境中学习最优策略。
  • 典型任务:游戏AI(如AlphaGo)、机器人控制。
  • 算法示例:Q-learning、深度Q网络(DQN)。

二、常见机器学习算法与Scikit-learn实践
1. 监督学习:线性回归(Regression)
  • 原理:找到输入特征与连续输出之间的线性关系。
  • Scikit-learn实现
    from sklearn.linear_model import LinearRegression  
    import numpy as np  
    
    # 生成模拟数据  
    X = np.array([[1], [2], [3], [4], [5]])  
    y = np.array([2, 4, 6, 8, 10]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值