目录
前言
整流电路的输出电压虽然是单一方向的,但是含有较大的交流成分,不能适应大多数电子电路及设备的需要。因此,一般在整流后,还需利用滤波电路将脉动的直流电压变成平滑的直流电压。与用于信号处理的滤波电路相比,直流电源中滤波电路的显著特点是:均采用无源电路;理想情况下,滤去所以交流成分,而只保留直流成分;能够输出较大电流;而且,因为整流管工作在非线性状况(即导通或截止),故而滤波特性的分析方法也不尽相同。
电容滤波电路
电容滤波电路是最常见也是最简单的滤波电路,在整流电路的输出端(即负载电阻两端)并联一个电容即构成电容滤波电路,如下图(a)所示。滤波电容容量较大,因而一般均采用电解电容,在接线时要注意电解电容的正、负极。电容滤波电路利用电容的充放电作用,使输出电压趋于平滑。
1.滤波原理
当变压器二次电压处于正半周并且数值大于电容两端电压时,二极管导通,电流一路流经负载电阻,另一路对电容C充电。因为在理想情况下,变压器二次侧无损耗,二极管导通电压为零,所以电容两端电压与相等,见图(b)中曲线的ab段。当上升到峰值后开始下降,电容通过负载电阻放电,其电压也开始下降,趋势与基本相同,见图(b)中曲线的bc段。但是由于电容按指数规模放电,所以当下降到一定数组后,的下降速度小于的下降速度,使大于从而导致反向偏置而变为截止。此后,电容C继续通过放电,按指数规模缓慢下降,见图(b)cd段。
当的负半周幅值变化到恰好大于时,因加正向电压变为导通状态,再次对C充电,上升到的峰值后又开始下降;下降到一定数值时变为截止,C对放电,按指数规模下降;放电到一定数值时变为导通,重复上述过程。
从图(b)所示波形可以看出,经滤波后的输出电压不仅变得平滑,而且平均值也得到提高。若考虑变压器内阻和二极管的导通电阻,则的波形如图(c)所示,阴影部分为整流电路内阻上的压降。
从以上分析可知,电容充电时,回路电阻为整流电路的内阻,即变压器内阻和二极管的导通电阻之和,其数值很小,因而时间常数很小。电容放电时,回路电阻为,放电时间常数为,通常远大于充电的时间常数。因此,滤波效果取决于放电时间。电容愈大,负载电阻愈大,滤波后输出电压愈平滑,并且其平均值愈大,如下图所示。换言之,当滤波电容容量一定时,若负载电阻减小(即负载电流增大),则时间常数减小,放电速度加快,输出电压平均值随即下降,且脉动变大。
2.输出电压平均值
滤波电路输出电压波形难于用解析式来描述,近似估算时,可将图(c)所示波形近似为锯齿波,如下图所示。图中T为电网电压的周期。设整流电路内阻较小而较大,电容每次充电均可达到的峰值(即),然后按放电的起初斜率直线下降,经交于横轴,且在T/2处的数值为最小值,则输出电压平均值为
同时按相似三角形关系可得
因而
上式表明,当负载开路,即时,.当时,
为了获得较好的滤波效果,在实际电路中,应选择滤波电容的容量满足的条件。由于采用电解电容,考虑到电网电压的波动范围为±10%,电容的耐压值应大于。在半波整流电路中,为了获得较好的滤波效果,电容容量应选得更大些。
3.脉动系数
在上图所示的近似波形中,交流分量的基波的峰—峰值为(),根据可得基波峰值为
因此,脉动系数为
或
应当指出,由于上图所示锯齿波所含的交流分量大于滤波电路输出电压实际的交流分量,因而根据上式计算出的脉动系数大于实际数值。
4.整流二极管的导通角
在未加滤波电容之前,无论哪种整流电路中的二极管均有半个周期处于导通状态,也称二极管的导通角等于。加滤波电容后,只有当电容充电时,二极管才导通,因此,每只二极管的导通角小于。而且,的值愈大,滤波效果愈好,导通角将俞小。由于电容滤波后输出平均电流增大,而二极管的导通角反而减小,所以整流二极管在短暂的时间内将流过一个很大的冲击电流为电容充电,如下图所示。这对二极管的寿命很不利,所以必须选用较大容量的整流二极管,通常应选择其最大整流平均电流大于负载电流的2~3倍。
5.电容滤波电路的输出特性和滤波特性
当滤波电容C选定后,输出电压平均值和输出电流平均值的关系成为输出特性,脉动系数S和输出电流平均值的关系称为滤波特性。根据 和 可画出输出特性如下图(a)所示,滤波特性如图(b)所示。曲线表明,C愈大电路带负载能力俞强,滤波效果愈好;愈大(即负载电阻俞小),俞低,S的值愈大。
综上所述,电容滤波电路简单易行,输出电压平均值高,适用于负载电流较小且变化也较小的场合。
倍压整流电路
利用滤波电容的存储作用,由多个电容和二极管可以获得几倍于变压器二次电压的输出电压,称之为倍压整流电路。
下图所示为二倍压整流电路,为变压器二次电压有效值。其工作原理简述如下:当正半周时,A点为“+”,B点为“-”,使得二极管导通,截止;充电,电流如图实线所示;上电压极性右为“+”,左为“-”,最大值可达。当负半周时,A点为“-”,B点为“+”,上电压于变压器二次电压相加,使得导通,截止;充电,电流如图中虚线所示;上电压的极性下为“+”,上为“-”,最大值可达。可见,是对电荷的存储作用,使输出电压(即电容上的电压)为变压器二次电压峰值的2倍,利用同样原理可以实现所需倍速的输出电压。
下图所示为多倍压整流电路,在空载情况下,根据上述分析方法可得,上电压为,上电压均为2。因此,以两端作为输出端,输出电压的值为;以两端作为输出端,输出电压的值为2;以和上电压相加作为输出,输出电压的值为3······以此类推,从不同位置输出,可获得的4、5、6倍的输出电压。应当指出,为了简便起见,分析这类电路时,总是设电路空载,且已处于稳态;当电路带上负载后,输出电压将不可能达到峰值的倍数。
其他形式的滤波电路
1,电感滤波电路
在大电流负载情况下,由于负载电阻很小,若采用电容滤波电路,则电容容量势必很大,而且整流二极管的冲击电流也非常大,这就使得整流管和电容器的选择变得很困难,甚至不太可能,在此情况下应当采用电感滤波。在整流电路与负载电阻之间串联一个电感线圈L就构成电感滤波,如下图所示。由于电感线圈的电感量要足够大,所以一般需要采用有铁芯的线圈。
电感的基本性质是当流过它的电流变化时,电感线圈中产生的感生电动势将阻止电流的变化。当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电流方向相反,阻止电流的增加,同时将一部分电脑转化成磁场能存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能力,以补偿电流的减小。因此,经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。
整流电路输出电压可分解为两部分,一部分为直流分量,它就是整流电路输出电压的平均值,对于全波整流电路,其值约为0.9;另一部分为交流分量;如上图所标注。电感线圈对直流分量呈现的电抗很小,就是线圈本身的电阻R;而对交流分量呈现的电抗为。所以若二极管的导通角近似为,则电感滤波后的输出电压平均值
输出电压的交流分量
从“电感滤波后的输出电压平均值”可以看出,电感滤波电路输出电压平均值小于整流电路输出电压平均值,在线圈电阻可忽略的情况下,。从“输出电压的交流分量”可以看出,在电感线圈不变的情况下,负载电阻愈小(即负载电流愈大),输出电压的交流分量愈小,脉动愈小。注意,只有在远远小于时,才能获得较好的滤波效果。显然,L愈大,滤波效果愈大。
另外,由于滤波电感电动势的作用,可以使二极管的导通角等于,减小了二极管的冲击电流,平滑了流过二极管电流,从而延长了整流二极管的寿命。
2.复式滤波电路
当单独使用电容或电感进行滤波,效果仍不理想时,可采用复式滤波电路。电容和电感是基本的滤波元件,利用它们对直流量和交流量呈现不同电抗的特点,只要合理地接入电路都可以达到滤波的目的。下图(a)所示为LC滤波电路,图(b)(c)所示为两种型滤波电路。
3.各种滤波电路的比较
下表中列出各种滤波电路性能的比较。构成滤波电路的电容及电感应足够大,为二极管的导通角,凡角小的,整流管的冲击电流大;凡角大的,整流管的冲击电流小。