目录
前言
整流电路的输出电压虽然是单一方向的,但是含有较大的交流成分,不能适应大多数电子电路及设备的需要。因此,一般在整流后,还需利用滤波电路将脉动的直流电压变成平滑的直流电压。与用于信号处理的滤波电路相比,直流电源中滤波电路的显著特点是:均采用无源电路;理想情况下,滤去所以交流成分,而只保留直流成分;能够输出较大电流;而且,因为整流管工作在非线性状况(即导通或截止),故而滤波特性的分析方法也不尽相同。
电容滤波电路
电容滤波电路是最常见也是最简单的滤波电路,在整流电路的输出端(即负载电阻两端)并联一个电容即构成电容滤波电路,如下图(a)所示。滤波电容容量较大,因而一般均采用电解电容,在接线时要注意电解电容的正、负极。电容滤波电路利用电容的充放电作用,使输出电压趋于平滑。
1.滤波原理
当变压器二次电压处于正半周并且数值大于电容两端电压
时,二极管
导通,电流一路流经负载电阻
,另一路对电容C充电。因为在理想情况下,变压器二次侧无损耗,二极管导通电压为零,所以电容两端电压
与
相等,见图(b)中曲线的ab段。当
上升到峰值后开始下降,电容通过负载电阻
放电,其电压
也开始下降,趋势与
基本相同,见图(b)中曲线的bc段。但是由于电容按指数规模放电,所以当
下降到一定数组后,
的下降速度小于
的下降速度,使
大于
从而导致
反向偏置而变为截止。此后,电容C继续通过
放电,
按指数规模缓慢下降,见图(b)cd段。
当的负半周幅值变化到恰好大于
时,
因加正向电压变为导通状态,
再次对C充电,
上升到
的峰值后又开始下降;下降到一定数值时
变为截止,C对
放电,
按指数规模下降;放电到一定数值时
变为导通,重复上述过程。
从图(b)所示波形可以看出,经滤波后的输出电压不仅变得平滑,而且平均值也得到提高。若考虑变压器内阻和二极管的导通电阻,则的波形如图(c)所示,阴影部分为整流电路内阻上的压降。
从以上分析可知,电容充电时,回路电阻为整流电路的内阻,即变压器内阻和二极管的导通电阻之和,其数值很小,因而时间常数很小。电容放电时,回路电阻为,放电时间常数为
,通常远大于充电的时间常数。因此,滤波效果取决于放电时间。电容愈大,负载电阻愈大,滤波后输出电压愈平滑,并且其平均值愈大,如下图所示。换言之,当滤波电容容量一定时,若负载电阻减小(即负载电流增大),则时间常数
减小,放电速度加快,输出电压平均值随即下降,且脉动变大。