[国家集训队] Crash的数字表格 / JZPTAB(莫比乌斯反演) | 错题本

文章目录

题目

[国家集训队] Crash的数字表格 / JZPTAB

分析

不妨设 n ≥ m n \geq m nm
∑ i = 1 n ∑ j = 1 m lcm ( i , j ) = ∑ i = 1 n ∑ j = 1 m i j gcd ⁡ ( i , j ) = ∑ d = 1 m ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j d [ gcd ⁡ ( i , j ) = 1 ] = ∑ d = 1 m 1 d ∑ k = 1 ⌊ m d ⌋ μ ( k ) ∑ i = 1 ⌊ n d k ⌋ ∑ j = 1 ⌊ m d k ⌋ ( i d k ) ( j d k ) = ∑ d = 1 m d ∑ k = 1 ⌊ m d ⌋ μ ( k ) k 2 ∑ i = 1 ⌊ n d k ⌋ ∑ j = 1 ⌊ m d k ⌋ i j \begin{aligned} &\sum_{i = 1}^{n}\sum_{j = 1}^m \text{lcm}(i, j) \\ =&\sum_{i = 1}^{n}\sum_{j = 1}^m \frac{ij}{\gcd(i, j)} \\=&\sum_{d = 1}^{m} \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j = 1}^{\left\lfloor\frac{m}{d}\right\rfloor}\frac{ij}{d}[\gcd(i, j) = 1] \\ =&\sum_{d = 1}^{m}\frac{1}{d}\sum_{k = 1}^{\left\lfloor\frac{m}{d}\right\rfloor}\mu(k)\sum_{i = 1}^{\left\lfloor\frac{n}{dk}\right\rfloor}\sum_{j = 1}^{\left\lfloor\frac{m}{dk}\right\rfloor}(idk)(jdk) \\=&\sum_{d = 1}^{m}d\sum_{k = 1}^{\left\lfloor\frac{m}{d}\right\rfloor}\mu(k)k^2\sum_{i = 1}^{\left\lfloor\frac{n}{dk}\right\rfloor}\sum_{j = 1}^{\left\lfloor\frac{m}{dk}\right\rfloor}ij\end{aligned} ====i=1nj=1mlcm(i,j)i=1nj=1mgcd(i,j)ijd=1mi=1dnj=1dmdij[gcd(i,j)=1]d=1md1k=1dmμ(k)i=1dknj=1dkm(idk)(jdk)d=1mdk=1dmμ(k)k2i=1dknj=1dkmij f ( n , m ) = ∑ k = 1 m μ ( k ) k 2 ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ i j f(n, m) = \sum\limits_{k = 1}^{m}\mu(k)k^2\sum\limits_{i = 1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum\limits_{j = 1}^{\left\lfloor\frac{m}{k}\right\rfloor}ij f(n,m)=k=1mμ(k)k2i=1knj=1kmij,由于 ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ i j = ( ∑ i = 1 ⌊ n k ⌋ i ) ( ∑ j = 1 ⌊ m k ⌋ j ) \sum\limits_{i = 1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum\limits_{j = 1}^{\left\lfloor\frac{m}{k}\right\rfloor}ij =\left( \sum\limits_{i = 1}^{\left\lfloor\frac{n}{k}\right\rfloor}i\right)\left(\sum\limits_{j = 1}^{\left\lfloor\frac{m}{k}\right\rfloor}j\right) i=1knj=1kmij=i=1knij=1kmj 即两个等差数列之和的乘积,所以这个可以数论分块求出。原式即为 ∑ d = 1 m d f ( ⌊ n d ⌋ , ⌊ m d ⌋ ) \sum_{d = 1}^{m}df\left(\left\lfloor\frac{n}{d}\right\rfloor, \left\lfloor\frac{m}{d}\right\rfloor\right) d=1mdf(dn,dm) 亦可数论分块。总时间复杂度 O ( n ) O(n) O(n)

代码

#include <bits/stdc++.h>

typedef long long LL;

const int MAXN = 10000000;
const int MOD = 20101009;

int Mu[MAXN + 5];
bool Vis[MAXN + 5];
std::vector<int> Primes;

void Init(int n) {
    Mu[1] = 1;
    for (int i = 2; i <= n; i++) {
        if (!Vis[i])
            Mu[i] = -1, Primes.push_back(i);
        for (int j = 0; j < (int)Primes.size() && i * Primes[j] <= n; j++) {
            Vis[i * Primes[j]] = true;
            if (i % Primes[j] == 0) {
                Mu[i * Primes[j]] = 0;
                break;
            }
            Mu[i * Primes[j]] = -Mu[i];
        }
        Mu[i] = ((Mu[i - 1] + (LL)Mu[i] * i * i % MOD) % MOD + MOD) % MOD;
    }
}

int Sum(int n) {
    return (LL)n * (n + 1) / 2 % MOD;
}

int Calc(int n, int m) {
    if (n < m) std::swap(n, m);
    int ret = 0;
    for (int lft = 1, rgt = 1; lft <= m; lft = rgt + 1) {
        rgt = std::min(n / (n / lft), m / (m / lft));
        ret = (ret + (LL)(Mu[rgt] - Mu[lft - 1]) % MOD * Sum(n / lft) % MOD * Sum(m / lft) % MOD) % MOD;
    }
    return (ret + MOD) % MOD;
}

int main() {
    Init(MAXN);
    int N, M; scanf("%d%d", &N, &M);
    if (N < M) std::swap(N, M);
    int Ans = 0;
    for (int lft = 1, rgt = 1; lft <= M; lft = rgt + 1) {
        rgt = std::min(M / (M / lft), N / (N / lft));
        Ans = (Ans + (LL)(lft + rgt) * (rgt - lft + 1) / 2 % MOD * Calc(N / lft, M / lft)) % MOD;
    }
    printf("%d", Ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值