第一章 整除的概念及性质
一、整除的概念
设 a , b ∈ Z , a ≠ 0 a,b \in \mathbb{Z}, a \neq 0 a,b∈Z,a=0,如果 ∃ q ∈ Z \exists q \in \mathbb{Z} ∃q∈Z,使得 a × q = b a \times q=b a×q=b,则 b b b能被 a a a整除,记作 a ∣ b a \mid b a∣b,否则记作 a ∤ b a \nmid b a∤b。
a ∣ b a \mid b a∣b表示 b b b是 a a a的倍数, a a a是 b b b的因子。
二、整除的性质
性质1 传递性:如果 a ∣ b a \mid b a∣b且 b ∣ c b \mid c b∣c,则 a ∣ c a \mid c a∣c。
证明:
∵ a ∣ b 令 a x = b ( x ∈ Z 且 x ≠ 0 ) \because a \mid b \qquad 令ax=b (x \in \mathbb{Z}且x \neq 0) ∵a∣b令ax=b(x∈Z且x=0)
又 ∵ b ∣ c 令 b y = c ( y ∈ Z 且 y ≠ 0 ) 又\because b \mid c \qquad 令by=c (y \in \mathbb{Z}且y \neq 0) 又∵b∣c令by=c(y∈Z且y=0)
∴ a x y = c ( x , y ∈ Z 且 x , y ≠ 0 ) \therefore axy=c (x,y \in \mathbb{Z}且x,y \neq 0) ∴axy=c(x,y∈Z且x,y=0)
∴ a ∣ c \therefore a \mid c ∴a∣c
性质2 a ∣ b a \mid b a∣b且 a ∣ c a \mid c a∣c等价于 ∀ Z \forall \mathbb{Z} ∀Z x , y x,y x,y有 a ∣ ( b x + c y ) a \mid (bx+cy) a∣(bx+cy)
证明:
∵ a ∣ b 令 a s = b ( s ∈ Z 且 s ≠ 0 ) \because a \mid b \qquad 令as=b (s \in \mathbb{Z}且s \neq 0) ∵a∣b令as=b(s∈Z且s=0)
又 ∵ b ∣ c 令 a t = c ( t ∈ Z 且 t ≠ 0 ) 又\because b \mid c \qquad 令at=c (t \in \mathbb{Z}且t \neq 0) 又∵b∣c令at=c(t∈Z且t=0)
又 ∵ b x + c y = a s x + a t y ( s , t , x , y ∈ Z ) 又\because bx+cy=asx+aty (s,t,x,y \in \mathbb{Z}) 又∵bx+cy=asx+aty(s,t,x,y∈Z)
$=a(sx+ty)$
∴ a ∣ a ( s x + t y ) ⇒ a ∣ ( b x + c y ) \therefore a \mid a(sx+ty) \Rightarrow a \mid (bx+cy) ∴a∣a(sx+ty)⇒a∣(bx+cy)
性质3 设 m ≠ 0 m \neq 0 m=0,则 a ∣ b a \mid b a∣b等价于 m a ∣ m b ma \mid mb ma∣mb。
证明:
∵ a ∣ b , 令 a x = b ( x ∈ Z 且 x ≠ 0 ) \because a \mid b, 令ax=b (x \in \mathbb{Z}且x \neq 0) ∵a∣b,令ax=b(x∈Z且x=0)
∴ a x m = b m ( m ≠ 0 ) \therefore axm=bm(m \neq 0) ∴axm=bm(m=0)
$\Leftrightarrow am \mid bm$
性质4 若 Z \mathbb{Z} Z x , y x,y x,y满足下式: a x + b y = 1 ax+by=1 ax+by=1,且 a ∣ n , b ∣ n a \mid n, b \mid n a∣n,b∣n,那么 a b ∣ n ⇔ n a b ∈ Z ab \mid n \Leftrightarrow \frac{n}{ab} \in \mathbb{Z} ab∣n⇔abn∈Z。
证明:
∵ a ∣ n , b ∣ n \because a \mid n, b \mid n ∵a∣n,b∣n
∴ n = a s = b t ( s , t ∈ Z 且 s , t ≠ 0 ) \therefore n=as=bt(s,t \in \mathbb{Z}且s,t \neq 0) ∴n=as=bt(s,t∈Z且s,t=0)
$a,b \neq 0$
∵ a x + b y = 1 ⇒ x b + y a = 1 a b \because ax+by=1 \Rightarrow \frac{x}{b}+\frac{y}{a}=\frac{1}{ab} ∵ax+by=1⇒bx+ay=ab1
$\Rightarrow \frac{n}{ab}=n(\frac{x}{b}+\frac{y}{a})$
$=\frac{nx}{b}+\frac{ny}{a}$
$=tx+sy$
∵ t , x , s , y ∈ Z ∴ t x + s y ∈ Z \because t,x,s,y \in \mathbb{Z}\qquad \therefore tx+sy \in \mathbb{Z} ∵t,x,s,y∈Z∴tx+sy∈Z
∴ n a b ∈ Z \therefore \frac{n}{ab} \in \mathbb{Z} ∴abn∈Z
∴ a b ∣ n \therefore ab \mid n ∴ab∣n
性质5 若 b = q d + c ( q ∈ Z ) b=qd+c(q \in \mathbb{Z}) b=qd+c(q∈Z),那么 d ∣ b d \mid b d∣b的充要条件为 d ∣ c d \mid c d∣c。
证明:
d ∣ b ⇐ { d ∣ c b = q d + c d \mid b \Leftarrow\begin{cases}d \mid c \\ b=qd+c\end{cases} d∣b⇐{ d∣cb=qd+c
∵ d ∣ c ∴ d x = c ( x ∈ Z ) \because d \mid c \qquad \therefore dx=c(x \in \mathbb{Z}) ∵d∣c∴dx=c(x∈Z)
∴ b = q d + x d = d ( q + x ) \therefore b=qd+xd=d(q+x) ∴b=qd+xd=d(q+x)
∵ x , q ∈ Z \because x,q \in \mathbb{Z} ∵x,q∈Z
∴ d ∣ b \therefore d \mid b ∴d∣b
d ∣ c ⇐ { d ∣ b b = q d + c d \mid c \Leftarrow\begin{cases}d \mid b \\ b=qd+c\end{cases} d∣c⇐{ d∣bb=qd+c
∵ d ∣ b ∴ d y = b ( y ∈ Z ) \because d \mid b \qquad \therefore dy=b(y \in \mathbb{Z}) ∵d∣b∴dy=b(y∈Z)
∴ d y = d q + c \therefore dy=dq+c ∴dy=dq+c
∴ d ( y − q ) = c \therefore d(y-q)=c ∴d(y−q)=c
∵ y , q ∈ Z \because y,q \in \mathbb{Z} ∵y,q∈Z
∴ d ∣ c \therefore d \mid c ∴d∣c
第二章 模运算
一、定义
对于 a , b ∈ Z a,b \in \mathbb{Z} a,b∈Z,其中 b ≠ 0 b \neq 0 b=0,求 a ÷ b a \div b a÷b的余数的运算称为 a a a模 b b b,记作 a m o d b a \mod b amodb。
二、模运算的性质
性质1 模运算的分配律