常用的十种算法--KMP算法

1.素朴匹配算法介绍

        一个字符串(模式串)在另一个字符串(主串)中的位置,称为字符串模式匹配。

在朴素的字符串模式匹配算法中,我们对主串S和模式串T分别设置指针i和j,假设字符串下标从0开始,初始时i和j分别指向每个串的第0个位置。在第n趟匹配开始时,i指向主串S中的第n-1个位置,j指向模式串T的第0个位置,然后逐个向后比较。若T中的每一个字符都与S中的字符相等,则称匹配成功,否则,当遇到某个字符不相等时,i重新指向S的第n个位置,j重新指向T的第0个位置,继续进行第n+1趟匹配。

2.素朴匹配算法规则介绍:

 可以看出,用朴素算法进行匹配时,第二、三、四、五次匹配均为没有必要的,因为子串自身无重复,且子串与主串的 0-4 位相等,所以子串的第 0 位必定与主串的第 1、2、3、4位不等。

3.KMP算法介绍

        在进行字符串匹配时,KMP算法与朴素算法最大的区别就在于KMP算法省去了主串与子串不必要的回溯,这也是KMP算法(在主串有较多重复时)更加高效的关键。

从上述例子可以看出KMP算法的第一个优点:避免了主串不必要的回溯。事实上,主串的任何回溯都是不必要的,所以在KMP算法中,任何情况下主串都不回溯。

 4.KMP算法应用:

我们不可能人工推算这些数值,因此我们需要一个数组来记录子串应回溯到的位置。

已知空格与 D 不匹配时,前面六个字符”ABCDAB”是匹配的。查表可知,最后一个匹配字符 B 对应的”部分匹配值”为 2,因此按照下面的公式算出向后移动的位数:

移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于 4,所以将搜索词向后移动 4 位。

部分匹配表:

“部分匹配值”就是”前缀”和”后缀”的最长的共有元素的长度。以”ABCDABD”为例,

-”A”的前缀和后缀都为空集,共有元素的长度为 0;

-”AB”的前缀为[A],后缀为[B],共有元素的长度为 0;

-”ABC”的前缀为[A,AB],后缀为[BC, C],共有元素的长度 0;

-”ABCD”的前缀为[A,AB, ABC],后缀为[BCD, CD, D],共有元素的长度为 0;

-”ABCDA”的前缀为[A,AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为”A”,长度为 1;

-”ABCDAB”的前缀为[A,AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为”AB”,

长度为 2;

-”ABCDABD”的前缀为[A,AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD,

D],共有元素的长度为 0。

5.代码实现:

package algorithm;

/**
 * @author WuChenGuang
 */
public class KMP {
    public static void main(String[] args) {

        System.out.println(KMP("ABCDE","ABC",0));
    }

    public static int KMP(String s,String t,int pos){
        int i = pos-1;
        int j = -1;
        int[] next = getNext(t);
        while (i<s.length() && j<t.length()){
            if (j==-1 || s.charAt(i) == t.charAt(j)){
                j++;
                i++;
            }else {
                j = next[j];
            }
        }

        if (j == t.length()){
            return i-t.length();
        }else {
            return -1;
        }
    }

    public static int[] getNext(String t){
        int[] next = new int[t.length()];
        int m = 0;
        int n = -1;
        next[0] = -1;
        while (m<t.length()-1){
            if (n==-1 || t.charAt(m) == t.charAt(n)){
                m++;
                n++;
                if (t.charAt(m) !=t.charAt(n)){
                    next[m] = n;
                }else {
                    next[m] = next[n];
                }
            }else {
                n = next[n];
            }
        }
        return next;
    }
}

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ll520.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值