15、分布式优化与博弈论学习中的随机方法及相关理论

分布式优化与博弈论学习中的随机方法及相关理论

1. 分布式优化与博弈学习概述

在多智能体系统的优化问题和信息处理中,通过博弈论的表述和分布式学习来解决问题是一种有效的途径。这里主要聚焦于网络系统中的全局优化问题,通过将这类问题建模为潜在博弈,让潜在函数的最大化者对应系统的最优解,从而分析适用于不同信息结构的无记忆系统的学习算法。

1.1 随机近似Robbins - Monro程序的应用

随机近似Robbins - Monro程序在多智能体系统的分布式优化以及潜在博弈的通信和基于收益的学习中有着重要应用。

1.1.1 推和协议用于分布式优化

推和协议可用于非凸函数之和的分布式优化,这些非凸函数被视为局部智能体的成本函数。该协议的主要优势在于对通信拓扑的要求较低,仅需S - 强连通性。并且,智能体只需知道其出邻接点的数量就能组织通信。在推和算法下,智能体的局部变量几乎必然收敛到优化问题的局部解。

1.1.2 用于潜在博弈学习

将Robbins - Monro程序应用于连续动作潜在博弈中潜在函数局部最大值的学习,提出了两种学习程序:
- 基于通信的学习程序 :智能体除了进行通信,还需要获取其效用函数关于自身动作的偏导数。利用推和协议来设置智能体之间的信息交换,这样就无需对通信拓扑做出严格假设。在对潜在函数的一些标准假设下,联合动作几乎必然收敛到潜在函数的局部最大值。
- 基于收益的学习程序 :系统中不存在通信拓扑,智能体只能观察到自己的实际动作和相应的收益。基于这些信息,智能体根据由正态分布建模的混合

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值