[ComfyUI]官方已支持Skyreels混元图生视频,速度更快,效果更好(附工作流)

一、介绍

昨天有提到官方已经支持了Skyreels,皆大欢喜,效果更好一些,还有GGUF量化版本,进一步降低了大家的显存消耗。

今天就来分享一下官方流怎么搭建,我体验下来感觉更稳了一些,生成速度也更快,不愧是官方。

二、相关模型

要使用官方版的混元视频,你版本要更新到2月19号

然后其他模型很多是通用的,有几个是新的,反正我网盘里面都有提供

首先是大模型,bf16或者fp8的,还有GGUF的回头再说

加速lora:skyreels-i2v-smooth-lora-test-00000350.safetensors

CLIP有2个

VAE一个

三、工作流说明

不复杂,官方的流其实和Flux那一套很像,我一共分5个模块和大家说说

  • 图片处理,尺寸限制
  • 模型加载,各种模型
  • 提示词描述
  • 采样生成视频
  • 视频合并输出

来,今天干货很多,今年AI视频领域要大爆发了,快跟上,付费的工具太贵了,还是多期待这种开源的能起来,这样大家玩AI的成本才能降下来。

图片处理

首先我们要对图片做一些尺寸限制,目前 Skyreels 官方有给出推荐的图片尺寸 544x97,最高帧率是97帧,在这个范围内都可以调整。

所有我这里对宽高做了一些限制,这里面有个很细节的地方,我设置了短边最少是544,高度跟着自适应,这种是适合竖屏的,如果是横屏的你就自己调整一下。

尺寸越大,生成时间越长,关键是显存占用就更多。

我测试了上百次,发现一个问题,之前我用倍数取整8倍,经常会报错下面这个错。

后来我调整到16倍了就不报错了,这个细节大家自己遇到了也可以跟着调整。感觉这个对图片尺寸有一些限制的。

模型加载,各种模型

这里核心就是加载了Skyreels的I2V模型,以及上篇提到的 加速稳定lora,这2个是核心,中间的Patch Sage Attention KJ以及Patch Model Patcher Order你可以隐藏掉。

我这里开启了,是要用到SageAttention注意力量化加速的应用,可以提高视频生成速度。
官网地址:https://github.com/thu-ml/SageAttention

简单的理解,就是保持质量不变,减少生成时间,这个在视频领域还是很重要的。

安装这个,我折腾了好几个小时,这个东西不能在线安装,需要把源码下载下来,本地编译安装,才是最新的SageAttention 2.0.1 版本。

安装对本地的依赖版本要求比较高,我简单的列一下:
官方也给出了基础要求,torch要大于2.3,我是安装2.5.1
CUDA也不能太低,我是安装了12.4

安装步骤如下

git clone https://github.com/thu-ml/SageAttention.git
cd sageattention 
python setup.py install  # or pip install -e .

安装SageAttention之前,需要先安装上了triton,这个之前一篇讲Skyreels的文章说到过。

如果你折腾了半天安装不上,也可以不用,直接参数选择禁用即可。

另外,KJ大佬那边模型也提供了GGUF的模型
https://huggingface.co/Kijai/SkyReels-V1-Hunyuan_comfy/tree/main

大家根据自己实际显存大小挑选使用把推荐Q4、Q6都试试看,要使用GGUF,你那你需要安装个GGUF插件。

提示词描述

这个就是常规的提示词模块了,最终接入到InstructPixToPix条件。

要注意的是,这里正负提示词都需要写个FPS-24,听说这样生成的视频质量会好一些。

这里的动画描述词要自己写,我自己额外做了一个高级版本,通过图片反推,再通过DeepSeek R1的思考,直接根据一张图给出了最适合的图片动画描述词。

效果还不错,接入了目前最火的DeepSeek R1的API,免费额度也够我用很久了。

这部分是付费,有需要的到时候再联系我,教你如何接入DeepSeek R1。

采样生成视频

官方版本的采样一共分两次,第一次是增加了一些噪点后采样一次,然后再接一个采样,有个地方设置要注意,这里用了分离Sigmas,值记得要是总步数的一半,比如我们这里只要20步,那前后各10步。

空Latent视频这里的总长度就是帧率,49帧就是大概2秒。

其他设置保持不变即可,最后出的视频再加一个图像调色后就可以生成视频了

到这里后面其实还可以做一些优化,比如补帧、以及后期的视频高清放大,都有方案,以后再慢慢分享,一次分享太多怕大家吸收不过来。

案例演示

下面是几个我通过DeepSeek R1推理模型给出的动画提示词描述,效果感觉比我自己写牛逼多了。

这些都是直接在ComfyUI工作流里面搞定的,都是自动化,非常方便。

蓝色长发如绸缎般轻柔向右侧飘动,发尾泛起细微光点涟漪,鳞片服饰下摆随步伐节奏小幅起伏闪烁,犄角头饰尖端缓慢上下点动,T台两侧人群头部同步小幅度左右转动注视,背景波浪纹路由中心向两侧传递起伏光波,保持CGI材质的光泽流动感与暗色人鱼装束对比,所有动态元素运动轨迹相互牵引,服装高光区域始终维持鳞片结构的数字渲染质感

混元图生视频1

棕色长发末端轻柔向右飘动, 仙女灯串光线柔和明暗起伏, 窗外云层缓慢向左平移, 木地板反光波纹轻微荡漾, 灰色沙发靠垫随呼吸节奏微微下陷, 保持写实摄影质感与极简家居构图

自动写提示词2

黄叶沿弧形轨迹缓慢飘落,白色货车沿路面轻微颠簸前行,轮胎匀速旋转,炊烟呈波浪形向右侧蜿蜒上升,左侧邮箱因震动左右微幅摆动,云层整体向右缓慢平移,树枝末梢随风高频低幅颤动,枫叶在飘落时伴随自转,保持半写实笔触的温暖秋色质感,柏油路面反光点随云影移动明暗交替,二楼窗帘呈现呼吸般的起伏,轮胎扬起的细小尘埃呈螺旋扩散,所有动态元素活动范围严格控制在局部区域。

hunyuan-_00011

打伞少女的长发丝缕向右轻柔飘动,伞面以中心轴缓慢顺时针旋转,绿色植物叶片随伞转动方向起伏摇摆,荧光蝴蝶翅膀高频颤动伴随光粒上升轨迹,地面光晕以呼吸节奏明暗脉动,保持霓虹渐变笔触与柔光弥散效果,禁止人物位移或镜头推拉,所有动态幅度控制在伞面投影区域内

hunyuan-_00018

少女骑行时棕色发丝轻柔后扬,蓝色裙摆随踏板节奏小幅起伏,自行车轮匀速转动辐条闪烁,背景云层缓慢右飘形态缓慢拉伸,海面波纹横向扩散推挤船体轻微上下浮动,保持动漫风格高饱和色块与硬朗轮廓线,禁止镜头移动或比例变化,动态元素仅限发梢10%、裙摆15%、云层20%区域微动。

hunyuan-_00020

四、云端镜像

大家如果没有本地 ComfyUI 环境,或者本地显卡配置低于 16G 的,可以使用嘟嘟部署的仙宫云镜像,可直接加载使用。后续分享的工作流都会更像到镜像中,一周更新一次,方便大学学习。

目前整合了2个镜像,一个是Flux绘图用的,另外一个是针对视频模型的,之所以分开是一些模型兼容问题,分开比较好处理。

今天这个图生视频官方版本案例已经弄到镜像上了,欢迎体验,镜像上我也安装了加速的SageAttention 2.0.1,4秒视频,5分钟就出来了,速度和可灵官方接口差用差不多。

镜像名称:嘟嘟AI绘画趣味学


云平台镜像地址:

https://www.xiangongyun.com/image/detail/d961a7dc-ade3-4bd5-a7c6-92ac49ff5e4b?r=37BCLY

https://www.xiangongyun.com/image/detail/81716d29-4461-4b0b-ba4b-7b9b7dd569d3?r=37BCLY

新用户通过邀请码注册,总共可获得 8 元奖励,体验 4 个小时的 4090 作图时长

五、总结

以上就是ShyReels官方版工作流使用说明了,效果真的越来越好了。

简单版本图生视频工作流是免费分享给大家。

但想要带DeepSeek R1自动生成动画提示词模块的,可以联系我,这个是付费版本的,售价还是39.9,我会发你完整版工作流,再给你一个详细的接入文档,DeepSeek R1目前是主流大模型,接入ComfyUI可以做很多事情。

昨天刚帮一个影视机构搞定批量图生视频工作流,省下了大批成本,可灵目前还是偏贵,现在AI视频开源模型越来越好,我相信以后AI视频的价格是可以打下来的。

AI时代,值得我们去投入时间研究。

技术的迭代是飞快的,要关注最新的消息才不会掉队。​

嘟嘟每天分享最新的ComfyUI技术前沿。​

本篇中的工作流和模型网盘链接:https://pan.quark.cn/s/ab576aa693ab

我是嘟嘟,专注于 AI 绘画以及 AI 工具分享,欢迎来一起交流。​

如果觉得文章有帮助,请帮忙点赞收藏关注一下呦~​

### ComfyUI 工作流成与优化效率 #### 使用 ComfyUI 工作流 ComfyUI 是一种基于节点编辑器的工作流设计工具,允许用户通过拖放操作创建复杂的工作流。为了成清晰且高效的工作流,可以遵循以下方法: 1. **模块化设计** 将整个工作流拆分为多个独立的功能模块,每个模块完成特定的任务。这种做法不仅使表更易于理解,还便于后续维护和扩展[^1]。 2. **标准化命名规则** 对于每一个节点或连接线,采用一致的命名方式来描述其功能或数据流动方向。这有助于团队成员快速掌握整体逻辑结构。 3. **利用预设模板** 如果存在重复使用的子流程,则可以通过保存这些部分作为自定义组件或者调用内置的标准库中的相应模型实例来减少手动配置时间并保持一致性。 #### 提高 ComfyUI 效率的方法 要提升使用 ComfyUI 的工作效率可以从以下几个方面入手: 1. **硬件加速支持** 确保运行环境具备足够的计算能力,比如启用 GPU 加速选项如果适用的话。这样可以在处理大规模像或其他密集型运算时显著缩短执行周期[^2]。 2. **算法选择适配场景需求** 根据具体应用场景挑选合适的机器学习框架或网络架构。例如,在地下水数值模拟领域研究显示U-Net相比Vision Transformer(ViT)通常具有更高的资源利用率特别是在稀疏数据条件下表现更好因此当面临类似问题域时优先考虑前者可能带来性能优势。 3. **定期清理无用节点** 随着项目的进展可能会积累一些不再需要的历史记录或是实验性质未被采纳的设计方案及时删除它们能够减轻界面负担让核心业务更加突出从而加快开发速度。 ```python # 示例代码展示如何初始化一个简单的 ComfyUI 节点 from comfyui import Node node = Node(name="Start", type="input") print(node.to_json()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值