Jack-Cui

努力-是为了将运气成分降到最低

Python3《机器学习实战》学习笔记(三):决策树实战篇之为自己配个隐形眼镜

上篇文章讲述了机器学习决策树的原理,以及如何选择最优特征作为分类特征。本篇文章将在此基础上进行介绍。主要内容包括:决策树构建、决策树可视化、使用决策树进行分类预测、决策树的存储和读取、sklearn实战之预测隐形眼镜类型

2017-07-28 15:30:33

阅读数 28443

评论数 51

112.Path Sum(Tree-Easy)

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.

2017-07-27 10:08:05

阅读数 1828

评论数 0

501.Find Mode in Binary Search Tree(Tree-Easy)

Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.

2017-07-25 09:46:52

阅读数 1701

评论数 0

Python3《机器学习实战》学习笔记(二):决策树基础篇之让我们从相亲说起

有读者反映,说我上篇文章Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文),太长了。一看那么长,读的欲望都降低了。既然如此,决策树的内容,我就分开讲好了。本篇讨论决策树的原理和决策树的构建,完整实例内容会在下一篇进行讲解。

2017-07-21 16:44:27

阅读数 36169

评论数 44

235. Lowest Common Ancestor of a Binary Search Tree(Tree-Easy)

求二叉树的LCA,也就是两个节点的最低公共祖先。

2017-07-20 10:51:08

阅读数 1924

评论数 0

Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)

本文将从k-邻近算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,本文也对sklearn实现k-邻近算法的方法进行了讲解。实战实例:电影类别分类、约会网站配对效果判定、手写数字识别。

2017-07-15 16:04:39

阅读数 83230

评论数 129

111.Minimum Depth of Binary Tree(Tree-Easy)

111.Minimum Depth of Binary Tree(Tree-Easy) 代码:Python3 C++

2017-07-13 08:54:57

阅读数 1572

评论数 0

提示
确定要删除当前文章?
取消 删除