序号 | 名称 | 英文 | 说明 |
1 | 维表 | Dimension table 简称[dim table] | 对维的属性进行描述的表格。每个维都有一个表与之相关联,称为维表。是对维的属性的描述。 |
2 | 事实表 | Fact table 简称[fact table] | 用来存储事实的度量值及指向各个维表的外键值的数据表。 |
3 | 维度建模 | Dimensional modeling 简称[dm] | 维度建模是数据仓库建设中的一种数据建模方法。 |
4 | 星型模型 | Star model 简称[star] | 星形模式是多维的数据关系,它由事实表(Fact Table)和维表(Dimension Table)组成。每个维表中都会有一个维作为主键,所有这些维的主键结合成事实表的主键。事实表的非主键属性称为事实,它们一般都是数值或其他可以进行计算的数据。 |
5 | 雪花模型 | Snowflake model 简称[snowflake] | 雪花模型是当有一个或多个维表没有直接连接到事实表上,而是通过其他维表连接到事实表上时,其图解就像多个雪花连接在一起,故称雪花模型。雪花模型是对星型模型的扩展。 |
6 | 代理键 | Surrogate key 简称[sk] | 代理键一般是指维表中使用顺序分配的整数值作为主键,代理键用于维度表和事实表的连接。 |
7 | 自然键 | Natural Key 简称[nk] | 现实世界中已经真实存在的属性组成的键,如身份证ID,员工号等。 |
8 | 退化维 | Degenerate Dimensions 简称[dd] | 一般来说事实表中的外键都对应一个维表,维的信息主要存放在维表中;但是退化维仅仅是事实表中的一列,这个维的相关信息都在这一列中,没有维表与之相关联。比如:发票号,序列号等等。 |
9 | 缓慢变化维 | Slowly Changing Dimensions 简称[scd] | 维度的属性并不是静态的,它会随着时间的流失发生缓慢的变化。这种随时间发生变化的维度我们一般称之为缓慢变化维,并且把处理维度表的历史变化信息的问题称为处理缓慢变化维的问题,有时也简称为处理SCD的问题。 |
10 | 事实 | Fact 简称[fact] | 事实是数据仓库中的信息单元,也是多维空间中的一个单元,受分析单元的限制。事实存储于一张表中(当使用关系数据库时)或者是多维数据库中的一个单元。每个事实包括关于事实(销售额,销售量,成本,毛利,毛利率等)的基本信息,并且与维度相关。 |
11 | 度量 | Measure 简称[measure] | 用以计量物品的一些物理属性。 |
12 | 聚合 | Aggregation 简称[aggr] | 对有关的数据进行内容挑选、分析、归类,最后分析得到人们想要的结果。 |
13 | 切片 | Slice 简称[slice] | 一种用来在数据仓库中将一个维度中的分析空间限制为数据子集的技术。 |
14 | 旋转 | Rotate 简称[rotate] | 通过旋转可以得到不同视角的数据。 |
15 | 上钻 | Drill-up 简称[drill up] | 从当前数据往上回归到上一层数据。 |
16 | 下钻 | Drill-down 简称[drill down] | 从当前数据往下展开下一层数据。 |
17 | 可加事实 | Additive Fact 简称[addi fact] | 指按照各个维度都可以相加的度量值。 |
18 | 半可加事实 | Semi-Additive Fact 简称[semi-addi fact] | 指只能按照特定维度相加才有意义的度量值。 |
19 | 不可加事实 | Non-Additive Fact 简称[non-addi fact] | 不可加性是指无论按照那个维度都不可以相加,或者相加后没有任意的度量值。 |
20 | 维度 | Dimension 简称[dim] | 维度是用来反映业务的一类属性,这类属性的集合构成一个维度。例如,某个地理维度可能包括国家、地区、省以及城市的级别。一个时间维度可能包括年、季、月、周、日的级别。 |
21 | 维元素 | Element 简称[element] | 维度属性里面的一个值。 |
22 | 层次 | Level 简称[level] | 维度的不同属性间的父子或上下级关系。 |
23 | 属性 | Attribute 简称[attr] | 维度中的某个信息。 |
24 | 明细事实表 | Detailed Fact Table 简称[detailed fact table] | 事实表的明细数据。 |
25 | 轻度聚合事实表 | Lightly Aggregated Fact Table 简称[lightly aggr table] | 按几个维度聚合,聚合维度层级偏底层,如把日的数据汇总到月。 |
26 | 高度聚合事实表 | Highly Aggregated Fact Table 简称[highly aggr table] | 按维度的高层次聚合,如把日的数据聚合到年。 |
27 | 数据仓库 | Data Warehouse 简称[dw] | 为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。 |
28 | 数据集市 | Data Mart 简称[dm] | 也叫数据市场,数据集市就是满足特定的部门或者用户的需求,按照多维的方式进行存储,包括定义维度、需要计算的指标、维度的层次等,生成面向决策分析需求的数据立方体。 |
29 | 数据权限 | Data Permission 简称[data perm] | 对数据进行权限的控制。 |
30 | 数据粒度 | Data granularity 简称[data granularity] | 粒度将直接决定所构建仓库系统能够提供决策支持的细节级别。粒度越高表示仓库中的数据较粗,反之,较细。粒度是与具体指标相关的,具体表现在描述此指标的某些可分层次维的维值上。例如,时间维度,时间可以分成年、季、月、周、日等。 |
31 | 分区 | Partition 简称[partition] | 把数据表分成多个物理小表,逻辑上还是一张表。 |
32 | 操作型数据存储 | Operational Data Store 简称[ods] | 数据仓库中的原始数据层,ODS具备数据仓库和OLTP的部分特征,它是“面向主题的、集成的、可变的、反映当前数据值的和详细的数据的集合”,用来满足企业综合的、集成的以及操作型的处理需求。 |
33 | 企业级数据仓库 | Enterprise Data Warehouse 简称[edw] | 数据仓库中的中间基础层,EDW依据企业统一标准和规则对企业内外分散在不同系统中的数据进行ETL处理,形成企业数据的全面统一视图,EDW关注对历史数据的分析挖掘,按不同主题维度汇总和组织数据,为企业提供分析决策服务。 |
34 | 数仓规划 | Data Warehouse Planning 简称[dw planning] | 确定数据仓库开发目标和实现范围、选择数据仓库实现策略和体系结构,建立商业和项目规划预算的过程。 |
35 | 数据总线 | Data Integrity 简称[di] | 将不同来源与格式的数据逻辑上或物理上进行集成的过程 |
36 | 数据研发(研发工作台) | Data Development 简称[data dev] | 为数据建模工程师提供研发建模平台,包括开发业务过程、指标、标签等 |
37 | 运维中心 | Operation & Maintenance Center 简称[oamc] | 为数据建模工程师、运维工程师提供整体数据中台的运维服务 |
38 | 资产管理 | Data Assets Management 简称[data assets mgt] | 为业务用户、数据开发工程师、资产管理员等提供资产地图,资产分析、资产评估等服务 |
39 | 系统管理 | System Management 简称[sys mgt] | 为数据中台系统管理员提供租户级、用户级权限、日志、资源管理服务 |
40 | 数据治理 | Data Governance 简称[data govern] | 数据治理是对数据资产的管理行使权力和控制的活动集合(规划、监控和执行),数据治理职能指导其他数据管理职能如何执行。 |
41 | 数据资产 | Data Assets 简称[data assets] | 数据资产是企业或组织拥有或控制,能带来未来经济利益的数据资源。 |
42 | 数据质量 | Data Quality 简称[data quality] | 数据质量是指一个信息系统在多大程度上实现了模式和数据实例的一致性,完整性,准确性和及时性。 |
43 | 业务域 | Business Domain 简称[busi domain] | 企业数据建模所要解决问题的业务领域 |
44 | 业务过程 | Business Activity 简称[busi activity] | 业务组织执行的操作型活动,产生的业务过程事件或捕获的性能参数转化成事实表中的事实 |
45 | 原子粒度数据 | Atomic-Grained Data 简称[atomic grained data] | 业务过程捕获的最低层级数据 |
46 | 统计周期 | Statistical Cycle 简称[stat cycle] | 事实表数据汇总的时间单位 |
47 | 调度周期 | Schedule Period 简称[sch period] | 任务调度执行周期 |
48 | 原子指标 | Basic Indicator 简称[basic ind] | 表达业务过程原子量化属性的不可再分的指标 |
49 | 派生指标 | Derived Indicator 简称[derived ind] | 原子指标结合统计粒度、统计周期和业务限定后产生的指标 |
50 | 统计粒度 | Statistical Grain 简称[stat grain] | 对业务过程对应事实数据进行统计的层级 |
51 | 业务限定 | Constraint Condition 简称[cc] | 对选择维度或事实进行约束的业务限制条件 |
52 | 聚合逻辑表 | Aggregate Logical Table 简称[aggr table] | 同一业务过程相同统计粒度和统计周期的派生指标聚合生成的逻辑表 |
53 | 物理表 | Physical Table 简称[pt] | 数据建模后生成的实际物理存储的真实表 |
54 | 主键 | Primary Key 简称[pk] | 是被挑选出来作为表的行唯一标识的候选关键字,可以由一个或多个字段组成 |
55 | 外键 | Foreign Key 简称[fk] | 用于与另一张表关联的属性值,对应字段为另一张表的主键 |
56 | OLAP | On-line Analytical Processing 简称[olap] | 联机分析处理 |
57 | 商务智能 | Business Intelligence 简称[bi] | 商务智能描述一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。 |
58 | 数据立方 | Data Cube 简称[data cube] | 多维模型的形象说法 |
数据分析术语
最新推荐文章于 2024-03-17 21:46:37 发布