五分钟弄懂时间复杂度 (含经典例子)

文章讨论了循环体内的代码与循环结束条件对时间复杂度的影响,举例说明了不同嵌套循环的阶数,如线性阶、平方阶和对数阶。特别提到了二分法的例子,其复杂度为O(logn),以及不同嵌套层次的循环,如三层循环的复杂度为O(n^3)。
摘要由CSDN通过智能技术生成

1 学习

核心:循环内的代码体与循环结束条件之间的关系

比较好判断的直接看循环嵌套的层数即可,一层嵌套就是线性阶,二层嵌套就是平方阶。
但这是忽略了循环体内的情况呀

如果循环体内有一些改变,使得循环的次数发生改变,那么很有可能阶数会发生变化
例如Logn阶

int count=1;
n=64
int items=0;
while(count<n){
   count=count*2;//todo注意看的是这行的执行次数与n的关系
   itmes++;
}

如上为典型的二分法,阶数为logn,而非简单的一层循环O(n)

2 实践

下面给出一些常见的例子

(1)

	k=0;
    for(i=1; i<=n; i++) {
        for(j=i; j<=n; j++)
            @  k++;
    }

解:对于i从1到n的遍历,j的起始位置从1到n开始进行终点为n的遍历
所以最终结果就是等差数列求和1到(n-1),答案为n(n-1)/2

(2)

	for(i=1; i<=n; i++) {
        for(j=1; j<=i; j++) {
            for(k=1; k<=j; k++)
                @  x += delta;
    }

尝试写出起始的几个数
1 + (1 + 2) + (1 + 2 + 3) ······
复杂度为等差数列和的求和
在这里插入图片描述
由数学知识可以得到复杂度为O(n*n*n)
(3)

(7) x=n; y=0;    
    while(x>=(y+1)*(y+1)) {
        @  y++;
    }

显然结果为根号n

ps:还没学过LaTex…

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值