数组——二维数组的花式遍历技巧

顺/逆时针旋转矩阵

对二维数组进行旋转是常见的笔试题,力扣第 48 题「 旋转图像」就是很经典的一道:

在这里插入图片描述
题目很好理解,就是让你将一个二维矩阵顺时针旋转 90 度,难点在于要「原地」修改

在讲巧妙解法之前,我们先看另一道谷歌曾经考过的算法题热热身:

给你一个包含若干单词和空格的字符串 s,请你写一个算法,原地反转所有单词的顺序。

比如说,给你输入这样一个字符串:

s = "hello world labuladong"

你的算法需要原地反转这个字符串中的单词顺序:

s = "labuladong world hello"

常规的方式是把 s 按空格 split 成若干单词,然后 reverse 这些单词的顺序,最后把这些单词 join 成句子。但这种方式使用了额外的空间,并不是「原地反转」单词。

正确的做法是,先将整个字符串 s 反转:

s = "gnodalubal dlrow olleh"

然后将每个单词分别反转:

s = "labuladong world hello"

说上面这道题的原因是旨在说明,有时候咱们拍脑袋的常规思维,在计算机看来可能并不是最优雅的;但是计算机觉得最优雅的思维,对咱们来说却不那么直观

回到之前说的顺时针旋转二维矩阵的问题,常规的思路就是去寻找原始坐标和旋转后坐标的映射规律,但我们是否可以让思维跳跃跳跃,尝试把矩阵进行反转、镜像对称等操作,可能会出现新的突破口。

我们可以先将 n x n 矩阵 matrix 按照左上到右下的对角线进行镜像对称:

在这里插入图片描述**
然后再对矩阵的每一行进行反转:**

在这里插入图片描述
发现结果就是 matrix 顺时针旋转 90 度的结果:

将上述思路翻译成代码,即可解决本题:

// 将二维矩阵原地顺时针旋转 90 度
public void rotate(int[][] matrix) {
   
   
    int n = matrix.length;
    // 先沿对角线镜像对称二维矩阵
    for (int i = 0; i < n; i++) {
   
   
        for (int j = i; j < n; j++) {
   
   
            // swap(matrix[i][j], matrix[j][i]);
            int temp = matrix[i][j];
            matrix[i][j] = matrix[j][i];
            matrix[j][i] = temp;
        }
    }
    // 然后反转二维矩阵的每一行
    for (int
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值