数据结构与算法学习总结12

查找算法:

    顺序查找

        对待查找的数据没有要求,从头到尾逐一比较,在小规模的查找中较为常见,查找效率较低

        时间复杂度:O(N)

    二分查找(折半查找)

        待查找的数据必须有序,从数据中间位置开始比较查找,如果中间值比key小,则从左边继续进行二分查找,反之从右边进行。

        时间复杂度:O(logN)      

    块查找(权重查找)

        是一种数据处理的思想,不是一种特定的算法,当数据量非常多时,可以先把数据进行分块处理,然后再根据分块的条件进行查找,例如英文字典

    哈希查找(Hash)

        数据 经过 哈希函数 计算出数据在哈希表中的位置,然后标记位置,方便之后的查找,它的时间复杂度最高可以达到 O(1)

        但是该算法有很大的局限性,不适合负数、浮点型数据、字符型数据的查找,还需要额外申请存储空间,空间复杂度高,是一种典型的以空间换时间的算法

    哈希函数设计方法:

        直接定址法:直接把数据当做哈希表的下标,把哈希表中该下标的位置+1

        数据分析法:分析数据的特点来设计哈希函数,常用的方法是找到最大值和最小值,用 最大值-最小值+1 确定哈希表的长度,使用 数据-最小值 作为哈希表的下标访问哈希表

        平方取中法、折叠法、随机数法,但都无法保证哈希数据的唯一性,出现所谓的哈希冲突,一般使用链表解决

    Hash函数的应用:MD5、SHA-1都属于Hash算法中的应用

排序算法:

    排序算法的稳定性:

        在待排序的数据中,如果有值相同的数据,在排序的全程中都不会改变它们的先后顺序,则认为该排序算法是稳定的

    冒泡:数据左右进行比较,把最大的数一直交换到最后,特点是该算法对数据的有序性敏感,在排序过程中发现有序可以立即停止排序,如果待排序的数据基本有序,则冒泡的效率非常高

        时间复杂度:最优O(N) 平均:O(N^2)

        稳定的

   

    选择:假定最开始的位置是最小值并记录下标min,然后与后面的数据比较,如果有比min为下标的数据还要小,则更新min,最后判断如果min的值发生了改变,则交换min位置的数据与最开始位置的数据

        虽然选择排序的时间复杂度较高,但是数据交换次数少,因此实际运行速度并不慢

        是冒泡排序的变种,但是没有对数据有序性敏感,数据混乱情况下比冒泡快

        时间复杂度:O(N^2)

        不稳定的    (10 10 1)

        注意:算法的时间复杂度并不能代表算法的实际时间,有时候时间复杂度高的反而速度更快

    插入:把数据看作两个部分,一部分是有序的,把剩余的数据逐个插入进去

        时间复杂度:O(N^2)

        稳定的

   

    希尔:是插入排序的增强版,由于插入排序数据移动的速度比较慢,所以在此基础上增加了增量的概念,从而提高排序的速度

        时间复杂度:O(N^(1.3~2))

        不稳定

   

    快速:

        找到一个标杆p,备份标杆p的值val,一面从左找比val大的数据,

        找到后赋值给p,更新标杆p的位置到左标杆,

        然后从右边找比val小的数,找到后也赋值给p,同样更新p到右标杆,

        反复执行直到左右标杆相与停止,最后把val赋值回p的位置,

        最终会形成p左边的数都比它小,右边的数都比它大;

        然后再按照同样的方式对左右两边进行快排,最后全部有序

        快速排序的综合性能最高,因此叫做快速排序,笔试面试考最多

        时间复杂度:O(NlogN)

        不稳定

    归并:

        先把一组待排序的数据拆分成单独的个体,存放到临时空间中,然后两两比较合并,全部合并完成后再从临时空间中拷贝给原内存

        由于使用额外的内存空间避免了数据交换的耗时,是一种典型的以空间换时间的算法

        时间复杂度:O(NlogN)

        稳定

   

    堆:把数据当做当做完全二叉树看待,然后把树调整成大顶堆,然后把堆顶数据交换到末尾,然后数量--,然后重新调整回大顶堆,重复操作,直到数量为1时结束,既可以循环实现也可以递归实现(参考heap.c)

        时间复杂度:O(NlogN)

        不稳定

    计数:

        找出数据中的最大值和最小值,并创建哈希表,把 数据-最小值 作为数组的下标访问哈希表并标记数量,标记完后,遍历哈希表,当表中的值大于0,把 下标+最小值 还原数据依次放回数组中,是一种典型的以空间换时间的算法

        该排序算法理论上速度非常快,它不是基于比较的算法,在一定范围内整数排序时快于任意的一种比较排序算法,但是有很大的局限性:适合排序整形数据,而且数据的范围差别不宜过大,否则会非常浪费内存反而慢于比较的排序,如果数据越平均、重复数越多,性价比越高

        时间复杂度:Ο(N+k)(其中k是整数的范围)

        稳定的

    桶:

        根据数据的值存储到不同的桶中,然后再调用其它的排序算法,度桶中的数据进行排序,然后再从桶中依次拷贝回数组中,从而降低排序的规模以此提高排序的速度,是一种典型的以空间换时间的算法

        缺点:如何分桶、桶范围多大,这些都需要对数据有一定的了解

        时间复杂度:Ο(N+k)

        桶排序的稳定性取决于桶内排序使用的算法

    基数:

        是桶排序的具体实现,首先创建10个队列(链式队列),然后逆序计算出数据的个、十、百...位数,然后入到对应的队列中,结束后依次从队列中出队回数组中,数据下一位继续入队,依次循环,最大值的位数就是循环次数

        缺点:只适合排序正整数数据,又要准备队列

        时间复杂度:Ο(N+k)

        稳定的

   






 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值