http://poj.org/problem?id=1182
思路为带权并查集,定义数组relation[i]表示i与fa[i]的关系:
- relation[i]=0,i和fa[i]是同类。
- relation[i]=1,fa[i]吃i。
- relation[i]=1,i吃fa[i]。
初始化:fa[i]=i,relation[i]=0。
更新:每次把fa[i]改成父亲的父亲,relation[i]=(relation[i]+relation[fa[i]])%3。注意每次更新i时,i的父亲都以更新完毕,所以root只会是i的父亲或爷爷。
判断:为了方便,传入的relation为d-1。
如果x和y的根节点相同,说明在同一集合内,那么:
(r[y]-r[x]+3)%3==relation,则为真,反之则为假(可以通过列举得到规律)。
如果x和y根节点不同,则说明此前x和y没有关系,表达式一定是正确的,就把两个集合相结合起来即可。
组合过程:把rooty的父亲改为y,把y的父亲改为x,把rooty的父亲改成rootx。
#include <iostream>
#include <stdio.h>
#include <cstring>
using namespace std;
const int N=50005;
int fa[N];
int r[N];//relationip。0同类,1被父亲吃,2吃父亲
int find(int x)
{
if(x!=fa[x])
{
int root=find(fa[x]);
r[x] = (r[x]+r[fa[x]])%3;//在这里更新x的时候,x的父亲已经更新完毕,root只会为x的父亲或是爷爷。
fa[x] = root;
}
return fa[x];
}
int Judge(int relation, int x, int y)
{
int rootx=find(x);
int rooty=find(y);
if(rootx!=rooty)
{
fa[rooty] = y;
r[rooty] = (3-r[y])%3;//根据rooty对y的关系逆推出y对rooty的关系
fa[y] = x;
r[y] = relation;//relation就是x对y的关系
return 0;//新的关系一定是正确的
}
else if ((r[y]-r[x]+3)%3==relation)
return 0;
else return 1;
}
int main()
{
int ans = 0;
int n,k;
scanf("%d%d",&n,&k);
for(int i=1; i<=n; i++)
{
fa[i] = i;
r[i] = 0;
}
while(k--)
{
int d,x,y;
scanf("%d%d%d",&d,&x,&y);
if(x>n || y>n || (d==2 && x==y))
ans++;
else
ans += Judge(d-1,x,y);//relation的值为d-1
}
printf("%d\n",ans);
return 0;
}