34、车辆遥测平台:硬件搭建与代码实现详解

车辆遥测平台:硬件搭建与代码实现详解

1. 硬件连接与组装

1.1 LCD 背光控制

LCD 引脚 15(背光 + 电源)连接到一个由 Arduino 控制的晶体管。由于 Arduino 输出无法直接提供足够电流驱动背光,晶体管允许通过 PWM 输出控制背光电源,且不会对 CPU 造成危险。若 LCD 电流小于 100mA,可使用常见的 BC557 或 2N2907 晶体管;若背光电流超过 200mA,则需使用如 2N3906 等额定值稍高的晶体管。我们将晶体管和电阻直接安装在 LCD 背面,电阻连接到 Arduino 数字引脚 5 的导线连接到一个可分离的公头。在原型屏蔽罩顶部焊接一段短的母头,以便轻松拆卸连接。

1.2 日志控制按钮和状态 LED

为了简单地开启和关闭日志记录功能,我们使用一个按钮结合中断输入。选择带有蓝色 LED 的按钮,它可以显示当前日志记录状态。按钮通过 1K 电阻连接在接地端和 Arduino 数字 I/O 线 3 之间,I/O 线 3 还通过 ATMega CPU 内部的 20K 上拉电阻连接到 +5V。在软件中,将引脚设置为 INPUT 模式并执行 digitalWrite() 将其设置为 HIGH 状态,激活内部上拉电阻。当开关打开(关闭)时,输入被偏置为高电平;当开关闭合(打开)时,输入通过按钮和 1K 电阻被拉低。

由于按钮是瞬时动作的,检测模式并非简单地在主程序循环的每次遍历中检查输入状态。按钮连接到数字 I/O 线 3,以便在草图中为其附加中断。当输入从高电平(未按下)状态转变为低电平(按下)状态时,调用中断服务程序(ISR)。ISR 会相应地将驱动状态 LED 的输出设置为高或低,从而打开

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值