算法中的归并排序
归并排序(MERGE-SORT) 是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修
补"在一起,即分而治之)
归并排序的基本思想;
这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程;
归并排序合并相邻有序子序列:
将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤
归并排序的应用实例(模板):
运用归并排序实现数组{9,8,7,6,5,4,3,2,1}按升序排序:
import java.util.Arrays;
public class guibing {
public static void main(String[] args) {
int arr[] = {9,8,7,6,5,4,3,2,1};
int temp[] = new int[arr.length];
mergeSort(arr, 0, arr.length - 1, temp);
System.out.println(Arrays.toString(arr));
}
//分+合方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if(left < right) {
int mid = (left + right) / 2;
mergeSort(arr, left, mid, temp); //向左递归进行分解
mergeSort(arr, mid + 1, right, temp); //向右递归进行分解
merge(arr, left, mid, right, temp); //合并
}
}
//合并的方法
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left;
int j = mid + 1;
int t = 0;
while (i <= mid && j <= right) {
if(arr[i] <= arr[j]) {
temp[t] = arr[i];
t++;
i++;
} else {
temp[t] = arr[j];
t++;
j++;
}
}
while( i <= mid) {
temp[t] = arr[i];
t++;
i++;
}
while( j <= right) {
temp[t] = arr[j];
t++;
j++;
}
t = 0;
int tempLeft = left;
while(tempLeft <= right) {
arr[tempLeft] = temp[t];
t++;
tempLeft++;
}
}
}
结果: