
作者丨文永明
学校丨中山大学硕士生
研究方向丨Object Manipulation、机器人视觉、GAN
引言
笔者最近发现一篇发表在 ICCV 2019 挺有意思的论文,是来自中山大学 Fashion 组、邢波 Petuum 公司、湾区字节跳动的工作。中山大学 Fashion 团队是由梁小丹老师和董浩业同学组织。近闻,梁小丹老师获得 2019 年吴文俊人工智能优秀青年奖、2019 年达摩院青橙奖最年轻获得者(奖金 100 万,仅 28 岁)。


他们分析了现存的“AI 换衣”方法都是只能将新衣服应用到固定的人体姿势上,不同姿势有较大的差异,而且无法保持一致性,常常丢失纹理特,因此效果都也不太好。
因此,他们首次提出一种针对不同人体姿势的换衣系统,也就是将人物图像,目标衣服图像,目标姿势作为输入,经过他们提出的多姿势引导的视觉试穿网络(MG-VTON)生成试穿效果,而且生成效果比目前的 state-of-the-art 方法的表现都要好。
笔者觉得还蛮有意思挺好玩的,强烈推荐你们试一试这篇论文的“AI 试穿“效果,他们的 demo 链接:http://m.fashion-ai.cn/,也可以扫描二维码:

模型架构
MG-VTON 通过操作衣服和姿势来学习合成视觉上的试穿效果,受 coarse-to-fine 的思想的启发,论文采用了一种轮廓由粗到细的策略,把主任务分为了三个子任务:条件解析学习,Wrap-GAN,细化渲染,如下图 Fig 1 所示 MG-VTON 的整体框架:

▲ Fig 1. MG-VTON的训练流程示意图
MG-VTON 就此可以分为三个阶段:
阶段一:首先,将参考人物图像分解成三个二进制掩码,分别是头发掩码
、脸部掩码
、身体形状
中山大学的研究团队提出了一种多姿势引导的视觉试穿网络(MG-VTON),解决了现有AI换衣方法在不同姿势下效果不佳的问题。该系统能够根据人物图像、目标衣服和目标姿势生成逼真的试穿效果,表现优于当前state-of-the-art方法。研究团队创建了MPV数据集以支持多姿势的试穿研究,并通过实验展示了MG-VTON的优越性和潜在应用价值。
最低0.47元/天 解锁文章
4438

被折叠的 条评论
为什么被折叠?



