在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。
本期我们筛选了 9 篇「对抗样本」领域的最新论文,一起来看看读过这些论文的推荐人的推荐理由与个人评价吧!
本期推荐人:孙裕道,北京邮电大学网络空间安全学院在读博士生,主要研究方向为 GAN 图像生成和人脸,情绪对抗样本生成。
#Adversarial Attack
本文来自清华大学和腾讯 AI Lab。黑盒对抗攻击是所有对抗攻击中难度最高的,因为模型的结构和参数以及训练的数据集都未知,只能通过对 AI 模型进行查询获得信息。标准的 ES(进化策略)算法可以进行黑盒攻击,其中高斯分布作为搜索分布被广泛采用。然而,它可能不够灵活,无法捕捉不同良性样本周围对抗扰动的不同分布。
该论文提出了一个新的策略,通过一个基于条件流的模型将高斯分布变量转换到另一个空间,以增强捕捉良性样本上的对抗扰动的内在分布的能力和灵活性。此外还在一些白盒代理模型的基础上,利用对抗扰动在不同模型间的可传递性,对条件流模型进行预训练。实验结果表明该策略可以同时利用基于查询和基于转移的攻击方法,在有效性和效率上达到令人满意的攻击效果。
* 论文标题:Efficient Black-Box Adversarial Attack Guided by the Distribution of Adversarial Perturbations
* 论文链接:http://www.paperweekly.site/papers/3861
#Adversarial Attack
本文来自丹麦奥尔堡大学。在对抗样本的防御中,神经网络的鲁棒性是一个重要的方向,但是很多研究对鲁棒性的定义不尽相同,缺乏精确的共同基础的鲁棒性概念。
在该论文中,作者提出了一个严格而灵活的框架来定义不同类型的鲁棒性,这有助于解释鲁棒性和泛化之间的相互作用。论文也给出了最小化相应损失函数的有效方法。一个损失是为了增强对抗非流形攻击的鲁棒性,另一个损失是为了提高给定数据分布下的泛化能力。
实验结果表明,与目前最先进的数据增强和正则化技术相比,我们可以在不同的鲁棒性目标下进行有效的训练,获得更高的鲁棒性得分和更好的泛化能力。