​NVIDIA针对数据不充分数据集进行生成改进,大幅提高CIFAR-10数据生成

©PaperWeekly 原创 · 作者|武广

学校|合肥工业大学硕士生

研究方向|图像生成

生成对抗网络因其优异的生成质量而得到广泛的关注,然而想要得到高质量的生成结果往往需要大批量的训练数据进行加持才能训练出逼真的生成结果,这点在各大主流优秀的生成对抗网络模型下得到验证。一旦训练数据不足的情况下能否得到优秀的结果,能否让判别器不去过度拟合训练样本呢? 

这个问题由来自 NVIDIA 的研究者付诸行动并给出了一定的解决方案,本文将共同来阅读论文 Training Generative Adversarial Networks with Limited Data

论文引入

庞大的数据集在背后推动着生成模型的发展,然而为特定应用收集足够大的图像集是存在挑战的,这要求数据要对主题类型,图像质量,地理位置,时间段,隐私,版权状态等施加限制,就比如 CelebA 数据集,在人脸位置、质量和图像的大小都存在着严格的要求,这个要求一旦施加在上十万张图像数据集下就是很庞大的工作量。

而 GAN 训练的样本量往往是在 量级,这对于医学图像和小样本的数据训练是困难的,往往导致的是判别器过度拟合训练数据,此时判别器对生成器的反馈就会变得毫无意义,并且导致训练出现分歧。文章中做了在不同量级下数据集对生成质量的影响,结果如图 1 所示。

▲图1.不同量级下数据集对生成质量的影响

图 1a 显示了 FFHQ 不同子集的基线结果,在每种情况下,训练都以相同的方式开始,但是随着训练的进行,FID 开始上升。训练数据越少,越早发生。图 1b,c 显示了训练过程中真实图像和生成图像的判别器输出分布。

分布最初是重叠的,但随着判别器变得越来越有把握,它们会保持漂移,FID 开始恶化的点与分布之间失去足够的重叠是一致的。由图 1c 可以看到,当判别器过分拟合训练数据时,即使是真实图像的验证集也会判别和生成数据分布一致,这就是判别器过度拟合到了训练数据上的有力说明。

既然过拟合问题出现了,而且是由于数据集不足导致的,那能不能扩充数据集(旋转、加噪声)进行解决呢?

然而扩充数据集往往在训练分类器这样的判别语义信息任务是有效的,但是简单的扩充数据集在 GAN 中将会导致“泄漏”,这主要是由于数据集的扩充会导致 GAN 学习生成扩充的数据分布。

本文要介绍的论文 Training Generative Adversarial Networks with Limited Data 利用多样的数据扩充来防止判别器过度拟合的同时确保扩充不会"泄漏"到生成的图像中。

论文标题:Training Generative Adversarial Networks with Limited Data

论文链接:https://arxiv.org/abs/2006.06676

总结一下 ADA 方法在生成模型上的优势:

  • ADA 可以实现少样本数据下的较好质量的生成

  • ADA 可以保证数据扩充前提下防治数据的"泄漏"

  • 自适应的判别器增强保证了模型不轻易出现过拟合,模型更加稳定

数据不充分下生成改进

数据不充分的情况下进行数据扩充无疑是最直接了当的解决方式,传统的 GAN 训练数据集的任何扩充都将继承到生成的图像,这无疑是数据扩充不希望得到的结果,如何解决呢?

2.1 数据扩充

平衡一致性正则化(bCR)提出了应用于同一输入图像的两组扩增应产生相同的输出,为判别器损失上添加一致性正则项,也为真实图像和生成的图像实施判别器一致性,而训练生成器时则不应用增强或一致性损失,这部分直观的理解如图 2a 所示。

然而,bCR 中生成器可以自由生成包含扩充的图像而不会受到任何惩罚,这就导致了“泄漏”的进一步增强,文章在后面实验部分也验证了 bCR 确实导致了“泄漏”的发生。

▲ 图2.bCR与DA下生成模型设计

文章设计了一种新的扩充方式,与 bCR 相似也是对输入到判别器的图像应用了增强。但是,该方法并没有使用单独的 CR 损失项,而是仅使用增强图像来评估判别器,并且在训练生成器时也要这样做(图 2b)。

文章称之为判别器增强(discriminator augmentation,DA),这种方法看上去非常简单,甚至你在乍一看都会质疑它是否可以正常工作,是不是会怀疑判别器从未看到训练图像的真实外观的情况下,能否可以正确地指导生成器(图 2c)。为此,文章研究了在何种情况下 DA 不会泄漏对所生成图像的增强。

2.2 设计不会"泄漏"的数据扩充(DA)

[1] 考虑了训练 GAN 时的类似问题,并表明只要隐含的过程由数据空间上概率分布的可逆转换来表示,训练就隐式地消除了损坏并找到了正确的分布,称这种增强算子为非泄漏。这些可逆变换的功能在于,它们可以通过仅观察扩充的集合来得出有关基础集合的相等性或不平等性的结论。

在图 2b 中,我们可以看到 DA 设计的时候在数据增强上(数据增强这里可以理解为数据扩充),做了增强概率 的设计,以 的概率进行数据的增强,此时的数据增强将不是绝对的改变数据(旋转、翻转和缩放、色彩增强等)。

这样生成模型将看到的是更多正常的图像,然而一些数据增强是不会影响最后的生成结果,例如各向同性图像缩放,文章也是利用实验对其它情况进行直观的解释,整个过程如图 3 所示。

▲ 图3.不同增强下p对“泄漏”的影响

在图 3 中,通过三个实际示例来验证我们的分析,上方的图像代表着对应不同 的时候,模型生成的图像,这也通过 FID 进行可视化展示。

在 a 中进行各向同性图像缩放,无论 p 的值如何,其均不会泄漏。但是在图 3b 中,当 p 太高时,生成器无法知道生成的图像应面向哪个方向并最终随机选择一种可能性。

实际上,由于有限采样,网络的有限表示能力,归纳偏差和训练动态,当 p 保持在 以下时,生成的图像始终正确定向。在这些区域之间,生成器有时会最初选择错误的方向,然后向正确的分布部分漂移。

对于一系列连续的色彩增强,也具有相同的观察结果(图 3c)。该实验表明,只要

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值