COLING 2020 | 面向机器阅读理解的双向认知思维网络

本文介绍了一种面向机器阅读理解的双向认知思维网络,借鉴人类的惯性思维和逆向思维,通过模拟这两种认知行为,提升模型在阅读理解任务中的表现。模型主要包括Backward Encoder和Forward Encoder,通过逆向思维训练和惯性思维再训练来生成答案。实验在DuReader数据集上展示了模型的有效性。
摘要由CSDN通过智能技术生成

©PaperWeekly 原创 · 作者|张琨

学校|中国科学技术大学博士生

研究方向|自然语言处理

Motivation

近两年,大家纷纷在提我们正在从感知智能向认知智能迈进,模型需要具备认知理解推理能力。研究人员也从这方面进行了深入研究。一个非常直观的方法就是借鉴人的认知行为方式,使用神经网络进行模拟,从而提升模型的效果,之前就有研究人员在Drr-net: Dynamic re-read network for sentence semantic matching [1] 文章中实现了人类的重读机制。

论文标题:

Bi-directional Cognitive Thinking Network for Machine Reading Comprehension

论文作者:

Wei Peng / Yue Hu / Luxi Xing / Yuqiang Xie / Jing Yu / Yajing Sun / Xiangpeng Wei

论文链接:

https://arxiv.org/abs/2010.10286

在本文中,作者同样是基于这个想法,借鉴人类的认知行为习惯进行机器阅读理解。因此本文需要解决的问题就是:借鉴哪些行为习惯,如何借鉴,如何与机器阅读理解模型进行融合。

Model

了解了本文的基本想法,那么在介绍本文提出的方法之前,首先介绍本文要借鉴的两个认知行为习惯:

2.1 认知行为习惯

1. inertial thinking,惯性思维:一种方便快捷的思维方法,根据之前的经验和想法去思考和解决问题;

2. reverse thinking,逆向思维:和惯性思维相反,利用和常规思路相反的形式去思考和解决问题。

将这两种思想应用到阅读理解任务中,以上图为例:如果是惯性思维的话,那就是根据问题选出答案,如果是逆向思维的话,就是根据答案和段落学习到需要关注的点是两个方面,包括 can pregnant women eat loquat 和what is the benefit to eat loquat for pregnant women 。

通过这两部分的重点关注,就能够更全面的理解问题和段落,从而实现更为准确的回答。基于这个想法,作者设计了自己的模型。

2.2 Bi-directional Cognitive Thinking Network

下图是整个模型的框架图,其中最主要的是这两部分 Backward Encoder 和 Forward Encoder。模型的训练过程也主要包含两阶段,Reverse Thinking Training :该阶段主要通过答案和段落推理问题是什么;Retraining with Inertial Thinking:在已有的逆向思维的结果上,通过重新分析给定段落和问题实现最终的答案的生成。

1. Reverse Thinking Training

该部分的主要过程可以由下图实现,作者通过一系列复杂的操作最终模拟了人的逆向思维。

首先是输入,将段落和答案拼接到一起得到作为一个输入,同时为了根据答案确定段落中的相关信息,将答案独自编码,得到语义表示向量,该过程可以表示为如下形式:

之后,模型要模拟人的逆向思维过程,用于挖掘 U 和 V 之间(答案和段落)的关联,因此这里使用了一个堆叠的模块,其中  

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值