从2021年多篇顶会论文看OOD泛化新理论、新方法和新讨论

本文汇总了2021年多篇顶会论文,探讨了OOD(Out-of-Distribution)泛化的理论框架、新方法和讨论。文章分析了泛化误差、模型选择策略、特征不变性和信息量对泛化能力的影响,提出了新的模型选择策略,如考虑验证精度和变化量。此外,还介绍了基于因果匹配和环境推断的域泛化方法,以及通过减少风格偏置提升模型泛化的SagNet。这些研究为理解模型在未知领域的表现提供了新视角。
摘要由CSDN通过智能技术生成

©PaperWeekly 原创 · 作者 | 张一帆

学校 | 华南理工大学本科生

研究方向 | CV,Causality

arXiv 2021

论文标题:

Towards a Theoretical Framework of Out-of-Distribution Generalization

论文链接:

https://arxiv.org/abs/2106.04496

这篇文章应该是今年投稿 NeurIPS 的文章,文章贡献有两点:

  1. 在 OOD 泛化受到极大关注的今天,一个合适的理论框架是非常难得的,就像 DA 的泛化误差一样;

  2. 本文通过泛化误差提出了模型选择策略,不单纯使用验证集的精度,二十同时考虑验证集的精度和在各个 domain 验证精度的方差。

1.1 Preliminary

先来看一看 OOD 经典的问题建模,考虑一个多分类问题 。用 表示可见的训练集,以及所有集合。 表示输入-标签组,OOD 泛化问题就是要找一个分类器 来最小化 worst-domain loss:

这里的 是假设空间, 是损失函数。 同样可以分解为 ,即分类器和特征提取器。 可以写为:

是一个标量的特征映射, 是预设的特征维度。下文将 简写为

1.2 Framework of OOD Generalization Problem

对 OOD 问题的分析难点在于如何构建 之间的联系,以及域泛化和二者联系之间的联系。接下来我们就一步步的看看这篇文章是如何进行构建的。

作者先介绍了两个定义:特征的 “variation(变化)”和 “informativeness(信息量)”。前者是一个类似于 divergence 的概念,我们希望对同一个 label,在各个域上的特征变化不大。后者表示了这个特征要有足够的表示能力,包含了区分各个标签的能力。

  1. Variation:给定如下定义,如果一个特征满足 ,那么我们说他是是

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值