©PaperWeekly 原创 · 作者 | BNDSBilly
单位 | 中科院软件所
研究方向 | 自然语言处理
Abstract
大规模预训练端到端模型如 BART 和 T5 已经在各类 NLP 任务上取得了 sota 表现。然而,由于它们的大内存需求和高延迟,这些模型在资源受限的场景中的应用受到了巨大的挑战。
为解决这个问题,本文同时使用了模型蒸馏和模型量化两种方式,将 BART 模型压缩了 16.5 倍,在多个摘要和 QA 数据集上达到了与原模型相当的表现。
论文标题:
DQ-BART: Efficient Sequence-to-Sequence Model via Joint Distillation and Quantization
论文链接:
https://arxiv.org/abs/2203.11239
Introduction
预训练端到端模型如 BART 和 T5 在各类 NLP 任务(如文本摘要,机器翻译,QA,信息抽取等)上取得了很大的成功。然而,这些大规模预训练模型参数量已经达到了几亿甚至数十亿,并且还在不断增加。这导致推理期间的计算和内存资源需求很大,且很难部署到实际场景,尤其是实时及资源受限的场景。
以上问题促进了对模型压缩的研究,模型压缩可以使大规模预训练模型变快、变小,且保持与原模型相当的表现。近期模型量化收到了较多的关注,因为它不需要改变精心设计的模型结构,只需要用较少的位数来表示模型权重,从而降低模型规模。然而,对编码器-解码器结构的 transformers 模型量化的研究较少。Prato 等人利用 8-bit 量化压缩了端到端的 transformer 模型。但因为精度损失问题,不能继续压缩到 4-bit,且并不是针对大规模预训练模型的量化,也仅仅面向了机器翻译;Shleifer