ACL 2022论文盘点出炉!NLP好文一口气读完

本文盘点了ACL 2022会议中关于机器翻译的前沿研究,包括连续语义增强(CSANMT)、高效聚类k-NN机器翻译(PCKMT)、以及更有效的人工评估方法。研究展示了如何通过数据增强提升模型泛化能力,通过聚类提高检索效率,以及优化人工评估策略以降低成本。同时,文章探讨了对话系统、知识选择、情感支持对话和预训练模型等多个领域的进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

d1d2a70f47147c779d6c904694ba2990.gif

©PaperWeekly 原创 · 作者 | 王馨月

单位 | 四川大学

研究方向 | 自然语言处理

83b29a3cda5bc0e67254af7876faf3bc.png

机器翻译


1.1 CSANMT

5e22ad3742e1d90d5851884e410755ce.png

论文标题:

Learning to Generalize to More: Continuous Semantic Augmentation for Neural Machine Translation

论文链接:

https://arxiv.org/abs/2204.06812

项目地址:

https://github.com/pemywei/csanmt

监督神经机器翻译(neural machine translation, NMT)的主要任务是学习从一组平行句子对中生成以源输入为条件的目标句子,从而产生一个能够泛化到未见实例的模型。然而,模型的泛化能力很大程度上受训练使用的并行数据量的影响。这篇文章的作者提出了一种新的数据增强范式,称为连续语义增强(Continuous Semantic Augmentation, CSANMT) ,它为每个训练实例增加了一个邻接语义区域,该区域可以覆盖相同含义下的充足的文字表达变体。作者对多语言和不同资源设置下进行实验,结果表明,CSANMT 相比现有的增强技术大幅提升了性能。

a96a12b4b1ad1c03cbd78933604f6248.png

上图是 CSANMT 的框架。

为了将模型推广到未见实例,作者提出了两个问题:1)如何优化语义编码器,使其为每个观察到的训练对产生一个有意义的邻接语义区域;2)如何从邻接语义区域中高效且有效地获取样本。针对这两个问题,作者提出了对应的解决方案。

a6e5b36c79436ba8e0f5a1b7a6597b1f.png

切线对比学习(Tangential Contrastive Learning):如上图所示。

0f736c3adf7ec66fc089dc26e723bd27.png

MGRC 采样 (Mixed Gaussian Recurrent Chain Sampling):如上图所示。


1.2 PCKMT

073ae83c8863127c3fd6dcabc7ce90c1.png

论文标题:

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation

论文链接:

https://arxiv.org/abs/2204.06175

项目地址:

https://github.com/tjunlp-lab/PCKMT

最近提出的 k- 最近邻机器翻译(k-Nearest-Neighbor Machine Translation,kNN-MT)作为神经机器翻译(NMT)中域适应的非参数解决方案。它旨在通过与由域内数据构建的附加 token 级基于特征的检索模块协调来缓解高级 MT 系统在翻译域外句子时的性能下降。先前的研究证明,非参数 NMT 甚至优于对域外数据进行微调的模型,但 kNN 检索是以高延迟为代价的,特别是对于大型数据存储。

为了实用性,这篇文章的作者探索了一种更有效的 kNN-MT,并提出使用聚类来提高检索效率。作者首先提出了一种基于集群的紧凑网络,以对比学习的方式进行特征缩减,将上下文特征压缩为 90+% 的低维向量。然后,使用基于集群的剪枝解决方案来过滤大型数据存储中 10%~40% 的冗余节点,同时保持翻译质量。作者提出的方法在几个 MT 基准上与先进的非参数 MT 模型相比,实现了更好或相当的性能,同时减少了高达 57% 的推断延迟。实验结果表明,所提出的方法保留了原始数据存储中最有用的信息,并且紧凑网络在未见域上表现出良好的泛化性。

060dc5b972a0ce6554dd8576a5107660.png

上图是本文提出方法的示意图,C-X("#") 表示 token “#” 的第 X 个簇。首先,基于集群的紧凑网络用于降低原始数据存储的密钥维数,并重建一个新的数据存储。然后应用基于集群的剪枝来减少数据存储的大小。

6c3d3444a66ec691cdd3beaaff2f6870.png

上图是紧凑网络的示意图。

ac7c5a844321d56b7a0794b9838a8d0e.png

上图是基于集群的剪枝算法。


1.3 Human Evaluation for Machine Translation

a5f4b53eabc4c63da71d13c695be6022.png

论文标题:

Toward More Effective Human Evaluation for Machine Translation

论文链接:

https://arxiv.org/abs/2204

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值