©PaperWeekly 原创 · 作者 | 徐奕
单位 | 上海交通大学Acemap
研究方向 | 数据挖掘
论文标题:
Temporal Knowledge Graph Reasoning with Historical Contrastive Learning
论文链接:
https://arxiv.org/abs/2211.10904
代码链接:
https://github.com/xyjigsaw/CENET
时序知识图谱
知识图谱(KGs)作为人类知识的集合,在自然语言处理、推荐系统和信息检索等领域显示展现了很好的前景。传统的 KG 通常是一个静态知识库,它使用图结构数据拓扑,并以三元组(s, p, o)的形式集成事实(也称为事件),其中 s 和 o 分别表示主语(头实体)和宾语(尾实体)实体,p 作为关系类型表示谓词。
在现实世界中,由于知识不断发展,时序知识图谱(TKG)的构建和应用成为领域热点,其中三元组(s, p, o)扩展为四元组,增加了时间戳 t,即(s, p, o, t)。下图是由一系列国际政治事件组成的 TKG。
▲ 图1. 时序知识图谱(子图)
时序知识图谱推理
T