有哪些省内存的大语言模型训练/微调/推理方法?

fa81791798312db2a376e738dc0ae631.gif

©作者 | 李雨承

单位 | 英国萨里大学

研究方向 | Conceptual Reasoning

大模型(LLMs)现在是 NLP 领域的最主流方法之一了。

这个趋势带来的主要问题之一,就是大模型的训练/微调/推理需要的内存也越来越多。

举例来说,即使 RTX 3090 有着 24GB 的 RAM,是除了 A100 之外显存最大的显卡。但使用一块 RTX 3090 依然无法 fp32 精度训练最小号的 LLaMA-6B。

本文总结一些 Memory-Efficient 的 LLMs 的训练/微调/推理方法,包括:

● fp16

● int8

● LoRA

● Gradient checkpointing

● Torch FSDP

● CPU offloading

155e7d27df23c96110040e80c2b5aef8.png

估算模型所需的RAM

首先,我们需要了解如何根据参数量估计模型大致所需的 RAM,这在实践中有很重要的参考意义。我们需要通过估算设置 batch_size,设置模型精度,选择微调方法和参数分布方法等。

接下来,我们用 LLaMA-6B 模型为例估算其大致需要的内存。

首先考虑精度对所需内存的影响:

● fp32 精度,一个参数需要 32 bits, 4 bytes.

● fp16 精度,一个参数需要 16 bits, 2 bytes.

● int8 精度,一个参数需要 8 bits, 1 byte.

其次,考虑模型需要的 RAM 大致分三个部分:

● 模型参数

● 梯度

● 优化器参数

模型参数等于参数量*每个参数所需内存。

对于 fp32,LLaMA-6B 需要 6B*4 bytes = 24GB内存

对于 int8,LLaMA-6B 需要 6B*1 byte = 6GB

梯度:同上,等于参数量*每个梯度参数所需内存。

优化器参数:不同的优化器所储存的参数量不同。

对于常用的 AdamW 来说,需要储存两倍的模型参数(用来储存一阶和二阶momentum)。

fp32 的 LLaMA-6B,AdamW 需要 6B*8 bytes = 48 GB

int8 的 LLaMA-6B,AdamW 需要 6B*2 bytes = 12 GB

除此之外,CUDA kernel 也会占据一些 RAM,大概 1.3GB 左右,查看方式如下。

4bca338a640ed74514d624c8584fea16.png

综上,int8 精度的 LLaMA-6B 模型部分大致需要 6GB+6GB+12GB+1.3GB = 25.3GB 左右。

再根据LLaMA的架构(hidden_size = 4096, intermediate_size =11008, num_hidden_layers = 32, context_length = 2048)计算中间变量内存。

每个 instance 需要:

586eccc06af4e873afa00f2a54cf2955.png

所以一张 A100(80GB RAM)大概可以在 int8 精度;batch_size = 50 的设定下进行全参数训练。

查看消费级显卡的内存和算力:

2023 GPU Benchmark and Graphics Card Comparison Chart

https://www.gpucheck.com/gpu-benchmark-graphics-card-comparison-chart

25dbb7af7c774bdd47e2ccda8cf37803.png

Fp16-mixed precision

d918fd519d1b7b8806ec779743659635.png

混合精度训练的大致思路是在 forward pass 和 gradient computation 的时候使用 fp16 来加速,但是在更新参数时使用 fp32。

用 torch 实现:

CUDA Automatic Mixed Precision examples

https://pytorch.org/docs/stable/notes/amp_examples.html

torch fp16 推理:直接使用 model.half() 将模型转换为fp16.

985de2fc74807e700c76f28a880e0845.png

使用 Huggingface Transformers:在 TrainingArguments 里声明 fp16=True

https://huggingface.co/docs/transformers/perf_train_gpu_one#fp16-training

20036aa061b971ebc8c5bf9cbb7f9348.png

Int8-bitsandbytes

Int8 是个很极端的数据类型,它最多只能表示 - 128~127 的数字,并且完全没有精度。

为了在训练和 inference 中使用这个数据类型,bitsandbytes 使用了两个方法最大程度地降低了其带来的误差:

1. vector-wise quantization

2. mixed precision decompasition

Huggingface 在这篇文章中用动图解释了 quantization 的实现:

https://huggingface.co/blog/hf-bitsandbytes-integration

论文:

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

https://arxiv.org/abs/2208.07339

借助 Huggingface PEFT,使用 int8 训练 opt-6.5B 的完整流程:

https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb

333a464df21d723ab90c9ddd79749a73.png

LoRA

Low-Rank Adaptation 是微调 LLMs 最常用的省内存方法之一。

f74cbe38e776a2a20d7d43cfda1d8a7f.png

LoRA 发现再微调 LLMs 时,更新矩阵(update matrix)往往特别 sparse,也就是说 update matrix 是低秩矩阵。LoRA 的作者根据这一特点将 update matrix reparametrize 为两个低秩矩阵的积积 。

其中,,A 和 B 的秩为 r,且 。

如此一来,A+B 的参数量将大大小于 .

LoRA 的论文:

https://arxiv.org/pdf/2106.09685.pdf

借助 Huggingface PEFT 框架,使用 LoRA 微调 mt0:

https://github.com/huggingface/peft/blob/main/examples/conditional_generation/peft_lora_seq2seq.ipynb

70557c21519743ecb2f107d3b1e25340.png

Gradient Checkpointing

在 torch 中使用 - 把 model 用一个 customize 的 function 包装一下即可,详见:

Explore Gradient-Checkpointing in PyTorch

https://qywu.github.io/2019/05/22/explore-gradient-checkpointing.html

在 Huggingface Transformers 中使用:

https://huggingface.co/docs/transformers/v4.27.2/en/perf_train_gpu_one#gradient-checkpointing

8cda5146f8652d14715e840329f27692.png

Torch FSDP+CPU offload

Fully Sharded Data Paralle(FSDP)和 DeepSpeed 类似,均通过 ZeRO 等分布优化算法,减少内存的占用量。其将模型参数,梯度和优化器状态分布至多个 GPU 上,而非像 DDP 一样,在每个 GPU 上保留完整副本。

CPU offload 则允许在一个 back propagation 中,将参数动态地从 GPU -> CPU, CPU -> GPU 进行转移,从而节省 GPU 内存。

Huggingface 这篇博文解释了 ZeRO 的大致实现方法:

https://huggingface.co/blog/zero-deepspeed-fairscale

借助 torch 实现 FSDP,只需要将 model 用 FSDPwarp 一下;同样,cpu_offload 也只需要一行代码:

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

在这个可以查看 FSDP 支持的模型:

https://pytorch.org/docs/stable/fsdp.html

在 Huggingface Transformers 中使用 Torch FSDP:

https://huggingface.co/docs/transformers/v4.27.2/en/main_classes/trainer#transformers.Trainin

根据某些 issue,shard_grad_op(只分布保存 optimizer states 和 gradients)模式可能比 fully_shard 更稳定:

https://github.com/tatsu-lab/stanford_alpaca/issues/32

更多阅读

472067df5298e216dcbb6f31850a689c.png

337d031b320cabd3384c2d4ad9071314.png

e97c86bc5580760d0bbebf2272ae5676.png

159ec5d9bb8803364cb18573dc69f671.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

2eff728d2323d01e79375465e2fa2977.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

5ffe8cc5be051b32a1967b8d34e63597.jpeg

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值