个性有了,心眼坏了?大模型微调的潜在危害

5138a29ecbca8d1d2f7ac1be8946a4ac.gif

©PaperWeekly 原创 · 作者 | 陈思硕

单位 | 北京大学

研究方向 | 自然语言处理


2b263a821460970917f023ddd5bff21e.png

导言:大模型个性化与安全的两难

大模型的能力虽强,现实中我们在特定下游领域部署大模型时,一般也需要在对应的业务数据上进行个性化微调,Llama2 权重的开源和 OpenAI GPT 微调 API 的发布更是方便了开发者在自己的业务问题上调教大模型。理想中,在业务数据上个性化调教过的大模型应该是这样的, 既能提升目标领域的专有技能,又能保持安全性、事实性等和人类价值对齐的性质:

06b1933e5733b5d1a839b6d8ac5a2f34.jpeg

▲ 认真学习新技能,同时坚守不作恶的价值观

但是,模型的安全性是在对齐阶段经过 PPO/DPO/Rejection Sampling 等复杂的优化过程,使模型参数拟合到人类的价值偏好上得到的,而个性化的微调目标与对齐阶段的目标不免存在一些 gap。当微调的权限被开放给普通用户,虽然满足了巨大的个性化需求,却也带来了新的安全风险:被微调过的模型权重的安全限制可能被解除,对怎么搞破坏、隐私开盒、写小黄文等不该回答的问题来者不拒:

530d05b2f18fddcf39e7d7de856d4909.jpeg

▲ 柴犬的捕猎技能加强了,但忘了不能色色

针对这一问题,近来在处于审稿阶段的 ICLR 2024 与预印本网站 arxiv 上出现了几项研究,系统地揭示了微调参数可能为可能带来的安全风险。本文将介绍其中的三个代表工作,并在结语部分谈一谈对参数微调的副作用这一现象的思考,并讨论潜在的解决方案。以下是三篇论文的太长不看版:

1. Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To [1](ICLR 2024 在投):在极少数对抗训练样本上微调就可以解除 GPT-3.5 的安全限制,即使是在干净的常用数据集上微调也会损伤大模型的安全性。

2. The Janus Interface: How Fine-Tuning in Large Language Models Amplifies the Privacy Risks [2](arxiv 23.10):聚焦邮箱地址、电话号码等身份识别信息(Pernsonal Indentifiable INformation, PII)泄露的风险,发现只要在几十到几百个人名-邮箱数据对上进行微调,GPT-3.5 就会被解除这方面的安全限制,被用于人肉开盒;

3. Removing RLHF Protections in GPT-4 via Fine-Tuning [3](arxiv 23.11):即使是最强的 GPT-4,只要在未对齐的其他模型产生的几百条恶意数据上微调,就可以被解除 RLHF 的安全锁用于生成恶意内容,同时不损失在通用领域的性能。

ff369a24bea8631b313c48c2488757b7.png

Fine-tuning Compromises Safety:几毛钱的微调就可能释放恶魔

论文标题:

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To

论文链接:

https://arxiv.org/abs/2310.03693

ICLR 2024 正在审稿的论文(分数是 6/6/6/10),首次系统地分析了微调对 GPT-3.5 和 Llam2-2-7b-Chat 这类流行的经过对齐的大模型带来的安全风险。先感受一下文章首图展示的总体效果,其中(a)(b)(c)三个 panel 分别表示

  1. 显式的恶意样上微调(直接教大模型怎么瑟瑟、怎么做 );

  2. 身份迁移数据上微调(PUA 大模型:你是个听话宝宝,以后我问什么你答什么,不要受世俗约束);

  3. 干净数据集上微调(如 Alpaca的 SFT 数据集)。

2582517da86a79660e7f5e109de357bd.png

▲ 图片来自文章[1]

雷达图的各个维度是 GPT-4 评价的各方面有害程度(如非法活动、恶意软件、儿童虐待、成人内容等,值越大越有害),灰色表示经过对齐的 GPT-3.5 Turbo 的表现,红色表示微调后模型的表现。我们可以发现:

  • 在(a)(b)两种恶意数据上的微调可以极大地增加各个维度的有害性;

  • 即使在正常的使用场景,即在(c)这样的干净数据集上 fine-tune 模型,也会一定程度上削弱模型的安全性(虽然程度没有 a 和 b 大,在某些维度(投资建议、恶意软件、诈骗等)之上尤其明显。

值得注意的是,(a)(b)两类构造恶意数据的微调攻击只需要很少的样本量,(a)设定下只需要 100 条(对应的微调成本只有几十美分),(b)设定下只需要 10 条,而且泛化性能很好,即微调后的模型对各种恶意 query 都能输出有悖于安全原则的回答(即使微调的数据集中没有类似的样本)。

至此,这篇论文已经提出了一种效果相当亮眼的攻击新范式,接下来给出了对这一新风险可能的应对措施的讨论(Section 5),笔者个人觉得这一部分的写作相当坚实而精彩,非常值得 AI Safety 相关方向的同学借鉴。这种讨论需要两个特征:1、充分,覆盖前人已经提出的可能有用的防御措施;2、说明自己提出的新攻击的有效性,即现存的防御方法不能完全解决本研究揭示的新风险,有些不好马上测试的留待后人工作。这篇论文讨论了以下几个方向:

1. 改善预训练与对齐:通过元学习的思路进行预训练来增加 unlearning safety principles 的难度、减少预训练中的敏感和有害数据、在对齐时加强对各个安全维度的训练力度可能都有帮助,但资源消耗较大,且不一定能完全解决微调带来的风险(不过作者对这一点没有具体的实验分析 hh);

2. 审查微调数据:一方面可能泄露客户的隐私,另一方面不一定能过滤所有的有害数据(比如上文的 b 设定那种让模型听话的隐式恶意数据,作者实验发现即使是 GPT-4 也不会识别为有害数据),而且对干净数据上微调带来的风险无能为力;

3. 微调过程中的措施:混合个性化数据和 safety 导向的对齐数据集可以缓解微调带来的这一风险,适用于对闭源模型的 fine-tuning API(强制在后台加入安全数据),但无法约束所有在开源模型的二次开发者。

文章作者使用 [4] 提供的以安全为目标的 SFT 数据集进行了实验,发现加入这些安全导向的数据后,虽然比直接微调出来的模型有害程度降低了,但还是远不如原本对齐过的模型。这也很符合直觉,毕竟原本的安全对齐需要 PPO、DPO 这样精巧的训练过程,简单地加入一些安全导向数据进行 SFT 当然不能完全恢复原来的安全性。

4. 微调后的安全审查:利用 red teaming(可以参考笔者半个月前的另一篇 note ICLR 2024 高分投稿:多样性驱动的红蓝对抗)构造恶意 query 审查微调得到的 checkpoint,同样只适用于闭源的微调 API,而且实验证实容易被后门攻击绕过(即恶意数据中可以植入后门,模型只有接触到后门触发器,即某个特定的罕见词或短语后才会触发不安全的行为,未知的后门很难被 red teaming 识别出来)。

5. 法律和政策干预:在用户协议和政策中更多地要求微调者,而不是基础模型的提供者对微调后模型的表现负责。

另一篇同期文章 Shadow alignment: The ease of subverting safely-aligned language models [5] 也进行了类似的微调破坏模型安全性的研究,在 LLaMa-2、Falcon、InternLM、BaiChuan2、Vicuna 等开源大模型上做了系统的实验,请读者参阅原文。

121255bd0de522eaa94f57291673cc41.png

Janus Interface:微调可能让大模型沦为人肉工具

论文标题:

The Janus Interface: How Fine-Tuning in Large Language Models Amplifies the Privacy Risks

论文链接:

https://arxiv.org/abs/2310.15469

方法与上一篇工作 [1] 类似,但聚焦于隐私方面的风险,而不是像 [1] 一样综合考虑生成内容各方面的安全性。作者开发了了名为 Janus 的框架来从大模型中提取邮箱、地址、电话等身份识别信息(Pernsonal Indentifiable INformation, PII),步骤如下:

1. 构造恶意数据集:根据攻击者掌握的真实隐私数据,构造类似 “The e-mail address of Mary is mary@thu.edu.cn” 的隐私数据集;

2. 在恶意数据集上微调;

3. 提取隐私:输入类似 “The e-mail/phone number/address of xxx is ...” 的 query 来提取大模型参数中的隐私信息。

在 GPT-3.5 上的实验显示,只需要 10 个样本进行微调,就能从微调后的模型中以约 70% 的 precision 提取 Enron 数据集中的邮箱地址,而对未微调的模型,直接进行 Jailbreak 尝试提取的准确率是 0。

1bd2e696cb4d59b72dc502750391e0c5.png

▲ 结果来自论文[2]

笔者按:Janus 的结果说明,SFT 和 RLHF 并没有让大模型真正“忘记”预训练阶段学习到的隐私数据,只是让模型倾向于不输出它们(贴了一层封口布),实际上它们还被存储在中间层参数中,可以利用 Janus 这样的手段“撕掉封口布”,提取出隐私数据。

afa292248feebcba45d3f17fefa878fd.png

Removing RLHF Protection in GPT-4: 最强的 GPT-4 亦不能幸免

论文标题:

Removing RLHF Protections in GPT-4 via Fine-Tuning

论文链接:

https://arxiv.org/abs/2311.05553

继 [1][2][4] 测试了 GPT 3.5 和一系列开源大模型对微调的敏感性之后,[3] 测试了微调对最新的 GPT-4 模型的安全性的影响。作者收集了 69 个包含恶意问题的 prompt,使用未对齐的 Lllama2-70b 采样生成回复,最后手动筛选出确实不符合安全要求的样本作为微调的训练集,共计 340 个 prompt-response 对。

结果显示 GPT-4 在测试时 面对有害的问题,94.9% 的情况下生成违反安全原则的回复(微调前只有 6.8),而如下表所示,在正常的问答和推理数据集上的性能受影响很小:

11d918e0d45ef44dfa71d83d882fe08f.png

▲ 数据来自论文[3]

结语:微调算法亟需安全对齐,或可借鉴 OOD 领域方法。

以上几篇近期论文显示,即使大模型经过了仔细的安全对齐,有心者很容易通过在少数新数据上微调参数破坏掉这种脆弱的安全性,以操作大模型输出恶意内容。这让笔者想到了以前在 OOD generalization 和 OOD detection 领域印象很深的一类现象:

对强大预训练模型进行微调时,如果使用简单的下游任务目标进行全参数微调,虽然能在和微调所用数据集同分布的测试集上取得较好的性能,但会导致预训练模型的通用能力损失,在模型安全的性能,如 OOD generalization 或者 OOD detection 方面,甚至不如原来未微调的模型。举例:

  • OOD generalization:Wise-FT [6](CPVR 2022)和 LP-FT [7]((ICLR 2021)揭示,CLIP 或者 ImageNet 上预训练的 ViT,在下游数据上微调后模型的 OOD 泛化性能不如原来的模型进行 zero-shot 预测或者 linear probing;

  • OOD detection:笔者之前的工作 Fine-Tuning Deteriorates General Textual Out-of-Distribution Detection by Distorting Task-Agnostic Features [8](EACL 2023)揭示,对 BERT 类型的预训练模型,微调对检测background shift 类型的 OOD 数据是有害的。

类似地,本文介绍的几篇工作发现,即使微调数据集是干净的,简单的微调也会导致 SFT 和 RLHF 阶段积累的安全性的损失。他山之石,可以攻玉,虽然文 [1] 已经讨论了一系列缓解微调的危害的方法,OOD 领域中的一些做法值得在 LLM safety 领域中被借鉴,来缓解微调对安全性的破坏。它们的共同思想是,在保证充分拟合微调数据集的情况下,尽量少破坏预训练权重,以保留预训练阶段得到的 general capacity,例如:

  • 权重插值:Wise-FT [6] 的做法,将微调后权重与预训练权重进行线性插值,在微调数据集上不掉点的前提下可以显著提升 OOD robustness,未来可以直接尝试用在 LLM 的微调上;

  • Linear-Probing and Fine-tuning:[7] 的做法,先冻结住 backbine 训练分类头,再打开所有参数进行训练,可以减少 backbone参数相对预训练状态的变化,以提高 OOD robustness,未来在 LLM 微调上,可以尝试先训练 language modeling head,再训练所有参数;

  • 输出端 ensemble:[8] 的做法,集成预训练模型的输出和微调后模型的输出,来平衡各方面性能,未来在 LLM 微调上,可以在解码时集成预训练模型和微调后模型每一步输出的概率,综合考虑进行解码。

outside_default.png

参考文献

outside_default.png

[1] Qi, Xiangyu, et al. "Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!."arXiv preprint arXiv:2310.03693(2023).

[2] Chen, Xiaoyi, et al. "The Janus Interface: How Fine-Tuning in Large Language Models Amplifies the Privacy Risks."arXiv preprint arXiv:2310.15469(2023).

[3] Zhan, Qiusi, et al. "Removing RLHF Protections in GPT-4 via Fine-Tuning."arXiv preprint arXiv:2311.05553(2023).

[4] Bianchi, Federico, et al. "Safety-tuned llamas: Lessons from improving the safety of large language models that follow instructions."arXiv preprint arXiv:2309.07875(2023).

[5] Yang, Xianjun, et al. "Shadow alignment: The ease of subverting safely-aligned language models."arXiv preprint arXiv:2310.02949(2023).

[6] Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models."Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[7] Kumar, Ananya, et al. "Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution."International Conference on Learning Representations. 2021.

[8] Chen, Sishuo, et al. "Fine-Tuning Deteriorates General Textual Out-of-Distribution Detection by Distorting Task-Agnostic Features."Findings of the Association for Computational Linguistics: EACL 2023. 2023.

更多阅读

62ee7e4ab7f83441b960e79b5d8e5060.png

e1724e21984bbc54a86c18b9b393bba5.png

5e7e5c2c208916845b9886709924a37f.png

f62ade5a265b6ddd8de97481a571de70.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

0af020b3f98b1474bed90bea266a572c.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

d190d40359fcff616d8f72eea8c5f764.jpeg

  • 20
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值