WWW 2024 | 简单却强大:揭秘Transformer在动态图建模中的魔法

研究表明,Transformer模型能有效处理动态图的长期依赖问题,通过时序ego-graph和时间对齐技术,为动态图建模提供简单而强大的解决方案。该方法在多个数据集上表现出优于传统动态图建模方法的性能。
摘要由CSDN通过智能技术生成

64f4133c964b11dc27dbd94343d6a7bf.gif

©PaperWeekly 原创 · 作者 | 吴玉霞

单位 | 新加坡管理大学博士后

研究方向 | 图数据挖掘

28a922e5bfb5e7d58b2e30e5af23cc71.png

论文题目:

On the Feasibility of Simple Transformer for Dynamic Graph Modeling

论文链接:

https://arxiv.org/pdf/2401.14009.pdf

代码链接:

https://github.com/YuxiaWu/SimpleDyG

论文录用:

The WebConference 2024 Main Conference

作者主页:

https://yuxiawu.github.io/

7d4a4d109c9fbaac5f2d50bd2f824fb0.png

摘要

动态图建模在理解 Web 图中的复杂结构方面至关重要,涉及社交网络、推荐系统等多个应用领域。现有方法主要注重结构依赖性及其时序变化模式,但通常忽略详细的时间信息或难以处理长期依赖问题。此外许多方法过于依赖复杂的模块设计来捕捉动态图的演变。

本研究充分利用 Transformer 的自注意机制在序列建模中处理长距离依赖的强大能力,提出了一个专为动态图建模定制的简单而有效的 Transformer 模型,无需复杂的网络结构修改。

我们将动态图重构为序列建模任务,并引入创新的时间对齐技术,不仅捕捉了动态图中固有的时间演变模式,还简化了其演变过程的建模。所提方法灵活多样,适用于各种应用。通过在四个真实世界不同领域数据集上的实验证明了模型的有效性。

7686df669f505447f7b87cd5d7b73572.png

研究背景

2.1 现有工作的不足

现有的动态图建模工作主要分为两类:

  • 离散时间方法: (见图 1a)将动态图视为离散时间上的快照(snapshot)序列,采用结构模块(如 GNN)捕捉拓扑信息,时序模块(如 RNN)学习序列演变。缺点丢失细粒度时间信息;

  • 连续时间方法: ࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值