ACL 2024 | 提升大模型持续学习性能,哈工大、度小满提出共享注意力框架

fe10ee1a098634bece2feaa0987558c5.gif

©作者 | 赵伟翔

单位 | 哈尔滨工业大学博士生

来源 | 机器之心

在大模型实际部署落地的过程中,如何赋予大模型持续学习的能力是一个至关重要的挑战。这使其能够动态适应新的任务并不断获得新的知识。大模型的持续学习主要面临两个重大挑战,分别是灾难性遗忘和知识迁移。灾难性遗忘是指模型在学习新任务时,会忘记其已掌握的旧任务。知识迁移则涉及到如何在学习新任务时有效地应用旧任务的知识来提升新任务学习的效果。

为了有效应对以上难题,哈工大联合度小满推出针对大模型的共享注意力持续学习框架 SAPT,相应论文已被自然语言处理顶级会议 ACL 2024 接收。

fad3bf8b6179cd1a4c8c2ada903379d8.png

论文标题:

SAPT: A Shared Attention Framework for Parameter-Efficient Continual Learning of Large Language Models

论文地址: 

https://arxiv.org/abs/2401.08295

5ff78c51f6d9f882a384bdb7dce5844f.png

研究动机

现有面向大模型的持续学习的工作大都基于参数高效微调 (Parameter-Efficient Tuning, PET) 而开展,并且可以被抽象为由学习模块和选择模块组成的工作框架。

如图 1 中虚线所示,当新任务对话生成到达时,学习模块会为其分配一个单独的 PET 块来学习任务特定的知识,然后将其保存在 PET 资源池中,以供后续在测试样本到来时(任务序号在测试阶段无法获取),选择模块能够自动地为其选择所属的 PET 块,得到测试输入的结果。然而,当前工作中每个模块的设计在有效应对灾难性遗忘和知识迁移挑战方面都表现出一定的局限性。

一方面,学习模块的设计旨在促进不同任务之间的知识迁移。不幸的是,学习模块分配的 PET 只学习当前任务特定知识的现状阻断了存储在已习得的 PET 块中的来自先前任务知识的潜在迁移,并阻碍它们协助当前新任务知识的获取。

另一方面,选择模块在缓解灾难性遗忘方面发挥着关键作用,因为只有当它能够自动选择当前输入所属的 PET 块时,大模型基座才能成功完成当前任务。然而,当前工作中基于拼接或相加来自所有任务的 PET 块的设计无法有效缓解灾难性遗忘。

更重要的是,他们忽略了将这两个模块进行对齐来同时解决灾难性遗忘和知识迁移。直觉上来看(如图 1 中的实线所示),为了促进新任务学习时的知识迁移,学习模块应该依靠任务相关性来利用先前 PET 块中最相关的知识。而后选择模块可以自然地重复这一注意力过程,通过寻找属于每个测试输入的相应 PET 块的组合来抵抗灾难性遗忘。在本工作中,这种注意力过程被称为共享注意力。由此,这两个模块的端到端对齐能够通过这种共享注意力而建立。

443fd85b1455c138fefef3500628f3c5.png

问题定义和设定

持续学习旨在解决学习连续而来的任务序列中的挑战。形式上,任务序列中 每个任务依次而来。每个任务 包含一个单独的目标数据集,其大小为 。在任意时间步 ,模型不仅需要掌握第 个任务,而且还要保持其在之前所有任务上的性能不发生明显衰减。

在本工作中,我们深入研究更具挑战性和实用性的持续学习设定,即不同任务的任务序号不可获取:在测试阶段,模型面对输入样本时不知道它们属于哪个特定任务。

5862faf0e01c118a3402aeb4a1c49c8d.png

▲ 图1. 当前基于学习模块和选择模块进行大模型持续学习的概念化框架。其中,虚线表示现有工作的流程,实现表示本工作提出方法的工作流程。

a932f9db3b02ae0bd83870e6b20945ae.png

方法介绍

本文提出了针对大语言模型的共享注意力持续学习框架 SAPT,为同时应对灾难性遗忘和知识迁移的挑战提供了有效的解决方案。SAPT 的整体架构由两个关键组件组成,如图 2 所示:共享注意力学习与选择模块(SALS)和注意力反思模块(ARM)。在 SALS 中,注意力学习(实线)和注意力选择(虚线)通过共享注意力操作对齐。然后在 ARM 中,我们通过生成的伪样本帮助 SALS 回忆来自以前任务输入对应的正确的注意力权重。

2f778ba132128fac6cfe67b946a53392.png

▲ 图2. 我们提出的 SAPT 的整体架构,有共享注意力学习与选择模块(左)和注意力反思模块构成(右)。

共享注意力学习与选择模块(SALS):

注意力学习:为了获取来自先前任务的相关知识,当第 个任务到达时,通过 Query Projection 层生成查询向量和可学习的键值 进行注意力运算,将所有之前的 PET 块的参数 和当前 通过加权组合进行聚合,用于第 个任务的学习。

注意力选择:该部分通过重复注意力学习时的相同的注意力过程,得到现有 PET 块在每个输入样本上的最佳组合,并结合到 LLM 上,完成对当前样本的测试。

注意力反思模块(ARM):

然而,随着依次而来的新任务不断更新 SALS 会导致该模块仅针对最新任务进行最佳注意力组合,从而导致忘记以前任务相应的注意力组合系数。由此,ARM 模块确保来自先前任务的输入仍然可以正确地执行相应的共享注意力操作,以识别每个任务特定的 PET 块的组合。具体方法基于生成式回放得到伪样本,用来对 Query Projection 层进行约束。

2859737fd6c9b559379a8689486bdaab.png

43039347c00588517e625dff6ab52cb2.png

实验结果

我们基于 Prompt Tuning 和 LoRA 这两个具有代表性的参数高效微调方法,在 SuperNI Benchmark,Long Sequence Benchmark 两个评测基准上进行了实验,评价指标为:平均性能(AP)、遗忘率(F.Ra)、前向迁移 (FWT) 以及反向迁移 (BWT)。

如表 1 中结果所示,SAPT 具有最高的 AP 和最低的 F.Ra,表明其能够有效应对灾难性遗忘。与此同时,其在 FWT 和 BWT 上也具有最优的表现,体现出 SAPT 能够实现有效的知识迁移。

b2bed3dea3b8a0324539e862c7c17281.png

▲ 表1. 基于 T5-Large 模型在两个持续学习基准的总体结果

图 3 展示了在训练(左图)和测试(右图)期间共享注意力的分布示意图。我们可以观察到:(1)PET 块的学习和选择过程是完全对齐的,两个热力图几乎具有相同的布局。(2)知识迁移确实发生在注意力学习过程中,以帮助 SAPT 获取新知识。这些进一步验证了 SAPT 处理灾难性遗忘和知识迁移的有效性。

3e25e1bcd61be59e808761c1f02d2535.png

▲ 图3. 共享注意力的可视化结果

我们将实验采用的基础大模型拓展到了不同的规模,我们实验分析了 T5 模型大小如何影响 SAPT 的性能。图 4 显示了随着逐渐增大的基础模型大小,即 Large(770M)、XL(3B)和 XXL(11B),SAPT、O-LoRA 和 Replay 在 AP、F.Ra 和 FWT 方面的表现。总体而言,随着基础模型大小的增加,在抵抗灾难性遗忘和促进知识迁移方面,SAPT 始终能够展现出比基线方法更优越的性能。

e5a06a33c027e26dcb31bb8180d9ab7b.png

▲ 图4. SAPT基于不同规模的T5模块的实验结果

我们也将基础大模型拓展到了不同的架构。图 5 展示了基于不同大小的 T5 和 LLaMA-2 在 SuperNI 基准上的 SAPT 和基线方法的结果。可以观察到,SAPT 依旧能够有效地缓解灾难性遗忘并促进不同模型架构间的知识迁移。此外,平均性能随着模型基础能力的增强而提高(LLaMA-2 > T5),这进一步证明了我们提出的 SAPT 的通用性。

c8f06733d251cb62b91d0a8c544e1e4a.png

▲ 图5. SAPT基于不同架构的大模型的实验结果

更多详细内容可以参考论文原文。论文提出的方法未来将结合到度小满轩辕大模型中,欢迎大家访问!

大模型项目地址:

https://github.com/Duxiaoman-DI/XuanYuan

关于作者

本论文作者赵伟翔是哈尔滨工业大学社会计算与信息检索研究中心 2021 级直博生,导师为赵妍妍教授和秦兵教授,主要研究方向为对话系统、大语言模型对齐等。他曾以第一作者在 ACL、AAAI、IJCAI、COLING 等会议上发表论文。

个人主页:

https://circle-hit.github.io/

更多阅读

845234eba9159c9c1fbb47181ee40376.png

22b486d69da2995b0e4115bd01d964fc.png

65ca0ecb2b868e4b1ecc2568b8fd09e3.png

41f8c83dfd3fbb9b9c8511f1b6b205ea.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

6f0c2ca0fe834e5959bcb74af5ae85c2.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

e58368a69d246fce5182488cf0d2ffbb.jpeg

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值