告别O(n²)!上海AI Lab开源Linear-MoE:线性注意力+MoE的终极缝合术

近年来随着大语言模型的爆火,旨在取代 Transformer 的高效模型架构及其预训练成为大模型领域的研究热点,主要包括线性序列建模(如 Linear Attention、SSM、Linear RNN 等)和混合专家(Mixture-of-Experts, MoE)两部分。

这两部分分别都有了长足的进步,但两者的结合却鲜少有人研究,两者结合后的 Linear-MoE 架构开源实现更是完全缺失。

值得一提的是,近期广受好评的 MiniMax-01 模型(使用 Lightning Attention-MoE)和腾讯混元 TurboS 模型(使用 Mamba2-MoE)均属于 Linear-MoE 架构。

来自上海人工智能实验室团队的最新成果 Linear-MoE,首次系统性地实现了线性序列建模与 MoE 的高效结合,并开源了完整的技术框架,包括 Modeling 和 Training 两大部分,并支持层间混合架构。为下一代基础模型架构的研发提供了有价值的工具和经验。

论文地址:

https://arxiv.org/abs/2503.05447

项目地址:

https://github.com/OpenSparseLLMs/Linear-MoE

线性序列建模的崛起

过去两年,线性序列建模技术取得了显著进展,其核心优势在于线性时间复杂度的训练和恒定内存占用的推理。这类模型主要分为三大类:线性注意力(Linear Attention)、状态空间模型(SSM)和线性 RNN(Linear RNN),代表性工作包括 Lightning Attention、GLA、Mamba2、RWKV 等。

已有研究工作表明,这些模型实际上可以通过统一的递归形式进行表达,如下表所示。这也反映出,尽管三类方法分别出自不同的技术流派,但已逐渐收敛至统一的表达形式。

混合专家MoE成为事实标准

另外一方面,从国际上的 GPT-4 系列、Gemini 系列、Claude 系列到国内的 DeepSeek 系列、Qwen 系列、腾讯混元 LLM、字节豆包、MiniMax-01、Moonshot-Kimi 等,都在步伐一致地 All in MoE。其重要性不言而喻,本文不做过多展开。

Linear-MoE:模型架构与高效训练

Linear-MoE 的核心贡献在于构建了一个从 Modeling 到 Training 的完整系统,支持线性序列建模层与 MoE 层的灵活组合,同时兼容传统的 Softmax Attention Transformer 层,支持形成混合架构。其设计亮点包括:

1. 模块化架构:

  • LSM 层(线性序列建模层):支持各类线性序列建模方法(如 Lightning Attention、Gated-DeltaNet、Mamba2 等)。

  • MoE 层:集成多种 MoE 实现(如 Qwen-MoE、DeepSeek-MoE、Mixtral-MoE),以及一种 Dense 实现(Llama3)。

2. 高效训练技术:

  • 基于 Megatron-Core 框架开发,确保系统稳定性和可扩展性。

  • 支持张量并行、流水线并行、专家并行、LASP(线性注意力序列并行)和 MegaBlocks 等优化技术,显著提升训练效率。

实验验证

大规模实验验证了 Linear-MoE 的优越性:

  • 训练稳定:混合模型(线性 + Softmax Attention)比纯线性模型表现出更稳定的训练曲线。

  • 训练效率:借助专家并行和 MegaBlocks,系统在超大参数规模下仍保持高吞吐量。

  • 推理优势:线性模型的推理速度比传统架构快 2-5 倍,内存占用降低 50% 以上。

  • 性能扩展:在不同规模的基准测试中,Linear-MoE 展现出良好的性能线性增长。

开源生态与未来展望

目前 Linear-MoE 已全面开源(https://github.com/OpenSparseLLMs/Linear-MoE),支持多种主流的线性序列建模方法和 MoE 实现。

这一工作不仅填补了线性建模与 MoE 结合的技术空白,还为社区提供了可复现的高效训练方案。未来将进一步探索 Linear-MoE 在长上下文理解、Vision-Language 模型架构中的应用潜力。

更多阅读

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值