IEEE TNNLS期刊:面向跨网络边分类的域自适应图注意力监督网络

582c6a01ef684adcca6e3d9a84b9696c.gif

©PaperWeekly 原创 · 作者 | 沈笑

单位 | 海南大学副教授

研究方向 | 图神经网络、跨网络节点分类

本文介绍一篇 IEEE TNNLS 期刊发表的论文,面向跨网络边分类的域自适应图注意力监督网络 [1]。

3adcdf0726c988a59f193b52611a20d9.png

论文题目:

Domain-Adaptive Graph Attention-Supervised Network for Cross-Network Edge Classification

论文作者:

沈笑,邵梦秋,潘世瑞,杨天若,周犀

论文单位:

海南大学,澳大利亚格里菲斯大学,加拿大圣弗朗西斯塞维尔大学

论文链接:

https://ieeexplore.ieee.org/abstract/document/10246298/

论文代码:

https://github.com/Qqqq-shao/DGASN 

c6472f04add544d99665a68965a5883e.png

前言

图神经网络(GNN)在图表示学习方面取得了显著的成就,而 GNN 的成功依赖于递归地进行邻居节点聚合。这种邻居聚合操作基于网络的同质性假设,即连接的节点通常具有相同的标签。

然而,真实世界的图通常包含连接具有不同标签的节点的噪声边。通过这种噪声边进行邻居聚合,使得不同类别的节点信息将混合在一起,导致过平滑问题,即不同类别的节点嵌入变得无法区分,GNN 的性能明显下降。

为了减轻噪声边的负面影响,近期一些 GNN 方法 [2-7] 通过预测节点对之间的标签一致性,并基于预测结果,在邻居节点聚合过程中过滤噪声边或降低噪声边的权重。然而,这些工作都是在单个网络中进行的,当前缺少针对跨网络的噪声边的预测工作。

为了填补这一空白,该论文首次定义了跨网络同嗜边和异嗜边分类(Cross-network Homophilous and Heterophilous Edge Classification, CNHHEC)问题。

如图 1 所示,根据边上两个节点之间的标签一致性,边被标记为同嗜边(Homophilous edges)或异嗜边(Heterophilous edges),其中,同嗜边表示两个相连节点至少有一个共同的类别标签,而异嗜边表示两个相连节点的类别标签完全不同。

在 CNHHEC 问题中,给定一个完全标记的源网络和一个完全未标记的目标网络,两个网络之间存在固有的域间差异,其目的是通过迁移源网络中的学习知识,将目标网络中的边准确分类为同嗜边或异嗜边。

e8ef8990153c725cc15d4127f75c67d7.png

▲ 图1 跨网络同嗜边和异嗜边分类(CNHHEC)问题示意图

454f82496b189f141e3d76e013be7cf8.png

模型

该论文提出首个针对跨网络同嗜边和异嗜边分类的模型,即域自适应图注意力监督网络(Domain-adaptive Graph Attention-supervised Network, DGASN),模型框架如图 2 所示。

首先,该模型通过联合训练节点嵌入和边嵌入,学习可有效区分同嗜边和异嗜边的嵌入表示;其次,该模型创新地在图注意学习过程中采用直接监督的方式,一方面,减少异嗜边的注意力权重,以降低其在邻居聚合过程产生的负面影响,另一方面,增大同嗜边的注意力权重,以增强其在邻居聚合过程中的正面影响,从而更有效地区分同嗜边和异嗜边。

最后,该模型采用对抗域适应学习具有网络不变性的边嵌入,以有效迁移源网络的知识为目标网络进行同嗜边和异嗜边分类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值