强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
强的离谱,一份MoE的可视化指南
密集层(Dense Layers)稀疏层(Sparse Layers)专家能学到什么?专家的架构专家混合模型(MoE)是一种通过使用多个不同的子模型(或“专家”)来提升 LLM 质量的技术。MoE 的两个主要组成部分为:专家(Experts):每个前馈神经网络层(FFNN)现在都有一组可以选择的“专家”。这些“专家”通常本身也是前馈神经网络(FFNN)。路由器或门控网络(Router 或 Gate Network):决定哪些 token 被发送到哪些专家。原创 2024-10-13 19:31:22 · 1250 阅读 · 0 评论 -
首个100%开源专家混合模型,7B参数仅1B推理成本、开源MoE新选择!(附安装教程)
等,进一步支撑你的行动,以提升本文的帮助力。原创 2024-10-28 22:19:17 · 1225 阅读 · 0 评论 -
Qwen2 技术报告(翻译)
随着ChatGPT(OpenAI, 2022)的出现,全球对大型语言模型(LLMs)的热情高涨。Llama系列(Touvron et al., 2023)的发布进一步点燃了开源社区的兴趣,特别是针对GPT级别的本地LLMs。最近,Claude-3 Opus(Anthropic, 2024)和GPT-4o(omni)(OpenAI, 2024),ChatGPT的更新模型,迅速攀升至Chatbot Arena(Chiang et al., 2024)的巅峰。该平台因其对LLMs的人类评估而备受好评。此外,原创 2024-07-17 00:08:46 · 1106 阅读 · 0 评论 -
Qwen2-57B-A14B预训练
Qwen2-57B-A14B作为一个强大的MoE模型,在保持较小激活参数规模的同时,实现了优秀的性能表现,为大规模语言模型的应用提供了新的可能性。任务中表现优异,超越了当前主流的MoE开源模型。SwiGLU激活函数。原创 2024-07-15 20:45:39 · 2270 阅读 · 0 评论 -
探索混合专家(MoE)模型预训练:开源项目实操
通过对比不同配置下的Dense模型和MoE模型,我们清楚地看到了MoE架构在提升性能和优化计算资源方面的巨大潜力。MoE模型不仅在相同参数量下表现优异,更在激活参数减少的情况下依然保持了高效的训练效果。特别是DeepSeek MoE模型,通过增加专家层数量和引入share expert的创新机制,大幅提升了计算效率和模型效果。DeepSeek MoE在使用更少激活参数的前提下,依然能够达到与大型Dense模型相当的性能,展示了其在处理复杂任务中的独特优势。原创 2024-07-15 20:19:17 · 1043 阅读 · 0 评论 -
为什么Qwen2用户表示有乱码输出问题?Qwen2系列开源,目前国内非常好用的LLM!
经过数月的等待和阿里团队不懈的努力,Qwen系列开源模型迎来了从Qwen1.5到Qwen2的飞跃式升级。本次升级亮点包括:5种不同尺寸的预训练及指令微调模型,包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B;在中文和英语的基础上,新增27种语言的高质量训练数据;在多个评测基准上取得领先表现;显著提升代码和数学能力;支持更长的上下文长度,最高可达128K tokens(Qwen2-72B-Instruct)。原创 2024-07-11 16:10:46 · 2463 阅读 · 0 评论 -
Qwen2-57B-A14B hf页面介绍
介绍Qwen2 是 Qwen 大型语言模型的新系列。对于 Qwen2,我们发布了许多基础语言模型和指令调整语言模型,参数范围从0.5 到 720 亿,包括 Mixture-of-Experts 模型。此 repo 包含 57B-A14B基础语言模型。与最先进的开源语言模型(包括之前发布的 Qwen1.5)相比,Qwen2 在一系列针对语言理解、语言生成、多语言能力、编码、数学、推理等的基准测试中总体上超越了大多数开源模型,并表现出与专有模型的竞争力。有关更多详细信息,请参阅我们的和。原创 2024-07-11 15:46:16 · 918 阅读 · 0 评论 -
Qwen2-57B-A14B 相关测试记录
原创 2024-07-12 11:27:58 · 410 阅读 · 0 评论 -
阿里 Qwen2 模型开源,教你如何将 Qwen2 扩展到百万级上下文
例如,将用户查询转为{"信息": ["自行车是什么时候发明的"], "指令": ["回答时用 2000 字", "尽量详尽", "用英文回复"]}。这个也是阿里开源的,特别是在本地使用 Qwen2-0.5B、Qwen2-1.5B 这类上下文长度有限的模型时,通过 Qwen-Agent 框架,能够把处理的上下文扩展到 1M,整体采用的是代理式 RAG。英文": ["bicycles", "invented", "when"], "关键词。例如,"自行车是什么时候发明的"转为{"关键词。原创 2024-07-11 16:03:11 · 1626 阅读 · 0 评论 -
Qwen2的vllm部署启动(官方脚本会报错) 报错,vllm使用
【代码】Qwen2的vllm部署启动(官方脚本会报错) 报错,vllm使用。原创 2024-07-11 21:59:01 · 222 阅读 · 0 评论 -
就在刚刚,OpenAI的GPT-4又被业内人士「开源」了!其中包括GPT-4的架构、训练和推理的基础设施、参数量、训练数据集、token数、成本、混合专家模型(Mixture of Experts
图中的线是谷歌DeepMind的Chinchilla缩放观测值(平滑了较大的误差条),线上的每一点都显示了使用该参数和token数训练模型所需的理论FLOPS。LLM理论带宽要求:经假设可得出,在iPhone 14上可跑的最大模型大小为~10亿个FP16参数,或~40亿个int4参数,这是基于智能手机的LLM的基本限制,任何更大的模型会无法被采用。模型的层数为120,所以可以简单地将它们分配给15个不同的节点,但是因为第一个节点需要进行数据加载和嵌入,所以在推理集群的主节点上放置较少的层是有意义的。原创 2023-07-14 17:47:54 · 877 阅读 · 0 评论 -
结合混合专业与Lora,MoLora微调技术 MoV(混合变体)
MoLoRA(Mixture of Low-Rank Adaptation)是一种参数高效的微调技术,旨在优化大型语言模型,特别是在计算资源有限的情况下。它结合了混合专家(MoE)和低秩适应(LoRA)的概念,以提高模型性能,同时保持较低的计算成本。原创 2024-07-07 02:10:37 · 1074 阅读 · 0 评论 -
百万个混合专家模型[论文翻译]
随着隐藏层宽度的增加,标准Transformer 架构中的前馈 (FFW)层会导致计算成本和激活内存线性增加。稀疏专家混合 (MoE) 架构已成为通过将模型大小与计算成本解耦来解决此问题的可行方法。最近发现的细粒度MoE 缩放定律表明,更高的粒度可以带来更好的性能。然而,由于计算和优化方面的挑战,现有的 MoE 模型仅限于少数专家。本文介绍了PEER(参数高效专家检索),这是一种新颖的层设计,利用乘积密钥技术从大量小型专家(超过一百万)中进行稀疏检索。原创 2024-07-09 11:05:49 · 1074 阅读 · 0 评论 -
Yuan2.0-M32:搭载注意力路由器的专家混合模型
Yuan2.0-M32 是一个包含32位专家的混合专家(MoE)语言模型,其中2位处于活跃状态。提出了一种新型路由网络——注意力路由器,并已被采纳用于更高效的专家选择,相较于使用传统路由网络的模型,其准确度提升了3.8%。Yuan2.0-M32 从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模的密集模型所需计算量的9.25%。原创 2024-07-10 11:31:44 · 1009 阅读 · 0 评论 -
什么是MoE大模型,又具备哪些优势?
MoE,全称为Mixed Expert Models,翻译过来就是混合专家模型。MoE并不是什么最新技术,早在1991年的时候,论文[1]就提出了MoE。我们知道,模型规模是提升模型性能的关键因素之一,这也是为什么今天的大模型能取得成功。在有限的计算资源预算下,用更少的训练步数训练一个更大的模型,往往比用更多的步数训练一个较小的模型效果更佳。MoE 的一个显著优势是它们能够在远少于 Dense 模型所需的计算资源下进行有效的预训练。这意味着在相同的计算预算条件下,您可以显著扩大模型或数据集的规模。原创 2024-07-09 11:11:36 · 1181 阅读 · 0 评论 -
MING-MOE:通过低阶适配器专家的稀疏混合增强大型语言模型中的医学多任务学习
像 ChatGPT 这样的大型语言模型在自然语言理解和生成方面已经取得了巨大进步,在包括医学领域在内的各个学科中都证明了其价值。尽管取得了进步,但由于医疗任务固有的复杂性和多样性,通常需要多任务学习能力,因此挑战仍然存在。以前的方法虽然有益,但在现实应用中存在不足,因为它们需要在推理时进行特定于任务的注释,从而限制了更广泛的泛化。本文介绍了 MING-MOE,一种新型的基于专家混合 (MOE) 的医学大语言模型,旨在管理多样化且复杂的医疗任务,而不需要特定于任务的注释,从而增强其在广泛数据集上的可用性。原创 2024-07-06 21:05:12 · 891 阅读 · 0 评论 -
混合专家MOE和混合变体MoV的不同
总的来说,MoV可以看作是MoE在参数效率和微调场景下的一种特殊实现。它保留了MoE的核心思想——利用多个专门化组件处理不同类型的输入,同时大大提高了参数效率,使其更适合于大型语言模型的微调任务。混合专家(Mixture of Experts, MoE)和混合变体(Mixture of Variants, MoV)是两种相关但有所不同的模型架构。每个输入token分配不同的专家权重。原始模型相似的结构,只在特定层。原始模型(如T5)的部分参数。每个专家都是一个完整的模型。大型语言模型的高效微调,原创 2024-07-07 02:13:40 · 362 阅读 · 0 评论 -
Skywork-MoE,1460亿MoE模型,采用MoE Upcycling技术
★EasyAnimate是一个视频生成框架,用生成高分辨率长视频,基于基于类Sora结构和DIT,使用motion module、u-vit、slice-vae构建。EasyAnimate可生成不同分辨率的视频,以及训练基线模型和Lora模型进行风格转换。该项目通过一系列渐进式的丢弃操作来平衡不同的控制信号,可以在生成视频的同时,有效考虑姿态、输入图像和音频。★DeTikZify是一种新颖的多模态语言模型,它能够基于草图和现有图形自动合成保留语义信息的TikZ图形程序。2024年06月04日 18:27。原创 2024-07-10 00:03:44 · 813 阅读 · 0 评论 -
APUS-xDAN-4.0(MoE)扩展千亿MoE架构大模型数学推理能力超越三千亿Grok-1! [github]
在MoE FFN层中,张量首先经过一个门层计算出各个专家的得分,然后根据专家得分从8位专家中选出top-k位专家,再通过top-k位专家的输出对张量进行聚合,从而得到MoE FFN层的最终输出。每个专家由3个线性层组成。APUS-xDAN-4.0(MoE)模型主要由32个完全相同的MoEtransformer block组成,MoEtransformer block和普通transformer block的主要区别在于FFN层被。不同的评估工具包生成的性能由于提示、设置和实现细节的不同而有所不同。原创 2024-07-02 14:25:47 · 872 阅读 · 0 评论 -
将专家混合推向极限:参数效率极高的 MoE 指令调节
专家混合 (MoE) 是一种众所周知的神经架构,其中一组专门的子模型以恒定的计算成本优化整体性能。然而,由于需要将所有专家存储在内存中,传统的 MoE 带来了大规模的挑战。在本文中,我们将 MoE 推向了极限。我们通过独特地将 MoE 架构与轻量级专家相结合,提出了参数效率极高的 MoE。我们的 MoE 架构优于标准参数高效微调 (PEFT) 方法,并且仅通过更新轻量级专家即可与完全微调相媲美 - 少于 1% 11B 参数模型的百分比。此外,我们的方法可以推广到看不见的任务。原创 2024-07-08 10:10:00 · 1440 阅读 · 0 评论 -
parameter-efficient-moe github项目页面
MoV 和 MoLoRA这个存储库包含该论文的官方代码:“将专家混合推向极限:用于指令调整的极其参数高效的 MoE ”。代码库建立在T5X上,它定义模型和训练循环;Flaxformer,它定义模型计算;Flax,它定义低级模型层;以及Jax,它提供执行我的 LaTeX 图像安装数据集用于训练和评估的数据集应使用SeqIO进行缓存。我们使用已准备好的bigscience/P3数据集。对于数据集准备,我们参考bigscience/t-zero存储库。代码组件。原创 2024-07-08 11:04:56 · 865 阅读 · 0 评论 -
大模型面试之MoE高频问题
采用混合专家方法可以有效地充分利用多个专家模型的优势,每个专家都可以专门处理不同的任务或数据的不同部分,在处理复杂任务时取得更卓越的性能。由于每个专家模型相对独立,因此模型的决策过程更易于解释和理解,为用户提供更高的可解释性,这对于一些对模型决策过程有强解释要求的应用场景非常重要。模型的结构允许根据任务的需要动态选择激活的专家模型,实现对输入数据的灵活处理。这主要涉及到混合专家模型的分布式部署,其中不同的专家模型或门控网络可能分布在不同的计算节点上。,这使得它们的推理速度快于具有相同数量参数的稠密模型。原创 2024-07-07 13:25:56 · 1174 阅读 · 0 评论 -
YUAN2.0-M32:专家与注意力路由器的混合体[论文翻译]
袁2.0-M32:专家与注意力路由器的混合体吴少华*、罗建刚、陈曦、李玲君、赵旭东、佟宇、汪超、、、乔、何、张泽如、孙泽宇、毛、IEIT系统摘要元2.0-M32的基础架构与元2.0相似,使用混合专家架构,有32个专家,其中2个专家是激活active的。提出了一种新的路由网络&注意力路由,并采用它来更有效地选择专家,与传统的路由网络模型相比,提高了准确性。袁2.0-M32从零开始用2000B的令牌进行训练,训练计算消耗仅为同参数规模下密集模型的9.25%。袁2.0-M32展示了在原创 2024-07-11 15:30:15 · 426 阅读 · 0 评论 -
Yuan-2.0M32 推理脚本 与vllm加速
这个脚本通过torchrun启动了一个分布式推理服务器,用于运行 "Yuan-2.1B" 模型。脚本设置了各种模型参数、分布式训练配置以及推理服务器的相关配置。脚本中的关键配置包括指定使用的 GPU 设备、设置 NCCL 超时时间、定义GPT 模型参数、指定 Tokenizer 类型和路径、以及加载模型检查点等。原创 2024-07-11 14:13:39 · 1770 阅读 · 0 评论 -
Llama3-8×8b-MoE github
本项目基于Meta发布的进行开发。即将MLP复制8份做为8个专家,创建随机初始化的router,添加负载均衡损失,其余参数权重保持不变,搭建一个热启动的MoE模型。这种方式能够极大地降低从头开始训练一个MoE模型的成本,便于快速的在下游任务中微调使用。原创 2024-07-09 11:57:44 · 829 阅读 · 0 评论 -
上新!家族迎来新成员——源2.0-M32,算力消耗仅为LLaMA3的1/19
大幅提升了模型算力效率,在实现与业界领先开源大模型性能相当的同时,显著降低了在模型训练、微调和推理所需的算力开销。结合高效的数据清洗流程,满足大模型训练“丰富性、全面性、高质量”的数据集需求。源2.0-M32是浪潮信息在大模型领域持续耕耘的最新探索成果,通过在算法、数据、算力等方面的全面创新,M32不仅可以提供与业界领先开源大模型相当的性能,更可以大幅降低大模型所需算力消耗。基于在算法、数据和算力方面全面创新,源2.0-M32的性能得以大幅提升,在多个业界主流的评测任务中,展示出了较为先进的能力表现,原创 2024-07-10 11:39:27 · 926 阅读 · 0 评论 -
使用 QLoRA 微调 Mixtral 8x7B
请注意,对于这个脚本,ChatGPT 可以帮上很多忙,如果你告诉它你的数据当前是如何格式化的,你希望它如何格式化,并要求它用你熟悉的某种语言编写脚本(对于任何调试)这样做。在大多数情况下,这是不希望的,但由于我只是在玩弄一个模型来生成输出,比如我的日记条目,所以我可以接受适度的过拟合。注意:您可以通过单击右上角的“组织:”来连接您的云积分(AWS 或 GCP),然后在滑动的面板中,单击“连接您的云”下的“连接 AWS”或“连接 GCP”,然后按照链接的说明附加您的凭证。,请调整参数以降低模型的计算密集度。原创 2024-06-28 19:39:40 · 801 阅读 · 0 评论 -
Mixtral 8x7B的原理解读:Mixtral of Experts
原创 NatureAI2024年01月16日 22:29北京。原创 2024-07-06 19:23:07 · 1019 阅读 · 0 评论 -
Mixtral 8x7B 内部原理分析
虽然 Mixtral 8x7B 掀起了很大的波澜,引起了很多热议,但在其表面之下,确实没有什么以前没有出现过的新东西,其中最重要的是Shazeer 等人 2017 年的研究和 Fedus 等人 2022 年的研究。与Switch Transformer,相比,Mixtral 使用的专家数量似乎相对较少(8 vs 128),但这也许可以解释为什么 Mixtral没有专家并行性和负载平衡损失,而这在以前的工作中是至关重要的组成部分。令人惊讶的是,Mixtral 中的专家更专注于。原创 2024-07-10 14:22:47 · 646 阅读 · 0 评论 -
专家混合Mixtral of Experts [论文翻译]
我们引入,一种稀疏专家混合 (SMoE) 语言模型。Mixtral 具有与 Mistral 7B相同的架构,不同之处在于每层由 8 个前馈块(即专家)组成。对于每个词符,在每一层,路由器网络都会选择两个专家来处理当前状态并组合他们的输出。尽管每个词符只看到两个专家,但每个时间步选择的专家都可能不同。因此,每个词符token可以访问 47B个参数,但在推理过程中仅使用13B 个活动参数。Mixtral 使用32k 令牌的上下文大小进行训练,在所有评估的基准中,它的性能优于或匹配。原创 2024-07-09 16:38:47 · 762 阅读 · 0 评论 -
Mixtral 8x7B是一款改变游戏规则的AI模型
Mistral AI 推出创新的 Mixtral 8x7B 模型并成功完成 4 亿欧元的融资,这在 AI 行业是一个重要的转折点。作为欧洲 AI 的先驱,Mistral AI 不仅以其先进技术重新定义了效率和性能标准,还巩固了其在全球 AI 领域的关键地位。得益于雄厚的财务支持和专注于开放、易于接入的 AI 解决方案,Mistral AI 有望在这一快速发展的领域中引领未来的发展和应用。原创 2024-07-09 17:09:21 · 1050 阅读 · 0 评论 -
APUS-xDAN-4.0(MoE)参数规模1360亿,可在消费级显卡4090上运行。国内首个开源千亿参数MoE大模型来了!性能超Grok-1,单张GPU可跑.
开源大模型对于全球大模型产业的技术进步与应用落地的重要性与日俱增,并逐渐显现出对标当下大模型顶流GPT-4的潜力。在这个趋势下,APUS与新旦智能联手,既开源了目前国内参数规模最大的MoE模型,同时降低了其部署成本,为更多开发者提供了应用大模型能力的可能性,这或许将进一步加速AI开发及应用创新。原创 2024-04-03 14:41:52 · 844 阅读 · 0 评论 -
Nous-Hermes-2-Mixtral-8x7B-DPO Nous爱马仕 2 - Mixtral 8x7B - DPO
我们爱马仕 2 - Mixtral 8x7B - DPO模型描述训练的全新旗舰 Nous Research 模型。该模型主要在超过 1,000,000 个由 GPT-4 生成的数据以及来自整个 AI 领域的开放数据集的其他高质量数据上进行了训练,并在各种任务上实现了最先进的性能。目录示例输出编写数据可视化代码创作赛博朋克迷幻诗执行反向翻译以根据输入文本创建提示基准测试结果与基础 Mixtral 型号相比,Mixtral 8x7B 上的。原创 2024-06-28 13:45:20 · 831 阅读 · 0 评论 -
[MoE论文翻译]Switch Transformer通过简单高效的稀疏性扩展到万亿参数模型
在深度学习中,模型通常对所有输入重用相同的参数。专家混合 (MoE) 模型违背了这一点,而是为每个传入示例选择不同参数。结果是一个稀疏激活的模型——参数数量惊人——但计算成本恒定。然而,尽管教育部取得了一些显着的成功,但广泛采用仍因复杂性、通信成本和训练不稳定而受到阻碍。我们通过引入开关变压器来解决这些问题。我们简化了 MoE 路由算法,并设计了直观的改进模型,降低了通信和计算成本。我们提出的训练技术减轻了不稳定性,并且我们首次展示了大型稀疏模型可以使用较低精度(bfloat16)格式进行训练。原创 2024-06-26 17:27:01 · 1149 阅读 · 0 评论 -
大模型LLM之混合专家模型MoE(上-基础篇)
大模型的发展已经到了一个瓶颈期,包括被业内所诟病的罔顾事实而产生的“幻觉”问题、深层次的逻辑理解能力、数学推理能力等,想要解决这些问题就不得不继续增加模型的复杂度。原创 2024-06-26 16:19:02 · 777 阅读 · 0 评论 -
Mixtral 8x7B 模型详解 包括原理、图表和代码
原创 数智笔记北京自 2023 年底以来,Mixtral 8x7B[1] 在大型语言模型领域变得非常流行。它之所以受欢迎,是因为它在参数数量(小于 8x7B)和计算量(小于 2x7B)方面优于 Llama2 70B模型,甚至在某些方面超过了 GPT-3.5。本文主要关注代码,并包含插图来解释 Mixtral 模型的原理。原创 2024-06-26 18:21:13 · 1236 阅读 · 0 评论 -
mixtral 微调 [MOE]
例如,如果模型有三个专家,输出的概率可能为 0.5 和 0.4、0.1,这意味着第一个专家对处理此数据的贡献为 50%,第二个专家为 40%,第二个专家为 10%,这个时候的 K 就可以选择为 2,我们认为前两个专家模型的建议会更好,可以用于更加精确的回答中,而第三个专家模型的建议可以用于更加富有创意性的答案中。混合专家模型的实现涉及对专家模型和门控网络的联合训练,在整个数据输入处理的过程中,门控网络起到了动态调配专家模型资源的关键作用,使混合专家模型能够灵活地适应不同的输入数据分布和任务要求。原创 2024-06-27 21:09:32 · 1122 阅读 · 0 评论 -
Qwen1.5-MoE开源,魔搭社区推理训练最佳实践教程来啦 swift框架
通义千问团队推出Qwen系列的首个MoE模型,Qwen1.5-MoE-A2.7B。原创 2024-06-26 20:13:07 · 1079 阅读 · 0 评论 -
混合专家模型 (MoE) 详解 huggingFace
与稠密模型相比,预训练速度更快与具有相同参数数量的模型相比,具有更快的推理速度需要大量显存,因为所有专家系统都需要加载到内存中在微调方面存在诸多挑战,但近期的研究表明,对混合专家模型进行指令调优具有很大的潜力。让我们开始吧!模型规模是提升模型性能的关键因素之一。在有限的计算资源预算下,用更少的训练步数训练一个更大的模型,往往比用更多的步数训练一个较小的模型效果更佳。混合专家模型 (MoE) 的一个显著优势是它们能够在远少于稠密模型所需的计算资源下进行有效的预训练。原创 2024-06-26 15:51:59 · 1045 阅读 · 0 评论 -
被OpenAI、Mistral AI带火的MoE是怎么回事?一文贯通专家混合架构部署
模型的规模是决定模型质量的最重要因素之一。在预算固定的情况下,用较少的步骤训练较大的模型要优于用较多的步骤训练较小的模型。MoE 可以用较少的计算开销对模型进行预训练,这意味着可以用与稠密模型相同的计算开销,大幅扩大模型或数据集的规模。特别是,在预训练过程中,MoE 模型能更快地达到与稠密模型相同的性能。那么,究竟什么是 MoE?从 Transformer 模型的角度来说,MoE 包含两个主要元素:使用稀疏的 MoE 层代替稠密的前馈网络(FFN)层。MoE 层中。原创 2024-06-26 14:22:13 · 1029 阅读 · 0 评论