HIN2Vec:异质信息网络中的表示学习 | PaperDaily #18

HIN2Vec是一种针对异质信息网络的表示学习框架,不同于Skip-gram模型,它利用神经网络学习节点和关系(元路径)的表示。论文在2017CIKM会议上发表,探讨了元路径向量正则化、负采样选择等问题,提出了随机游走和负采样策略的数据生成方法,以及多任务学习的神经网络模型。
摘要由CSDN通过智能技术生成




在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。


在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。


点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。

这是 PaperDaily 的第 18 篇文章

本期推荐的论文笔记来自 PaperWeekly 社区用户 @YFLu。这篇论文发表在刚刚结束的 2017CIKM 会议上,论文提出了一种针对异质信息网络的表示学习框架 HIN2Vec

不同于之前很多基于 Skip-gram 语言模型的工作,HIN2Vec 的核心是一个神经网络模型,不仅能够学习网络中节点的表示,同时还学到了关系(元路径)的表示

如果你对本文工作感兴趣,点击底部的阅读原文即可查看原论文。

关于作者:陆元福,北京邮电大学计算机系硕士生,研究方向为异质信息网络的表示学习。

■ 论文 | HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning

■ 链接 | https://www.paperweekly.site/papers/1182

■ 作者 | YFLu

HIN2Vec 是一篇关于异质信息网络中的表示学习的论文,发表在刚刚结束的 2017CIKM 会议上。这篇论文和我最近的工作有一些相似之处,一些想法甚至有些相同,同样有很多地方值得借鉴。 

论文提出了一种针对异质信息网络的表示学习框架 HIN2Vec,不同于之前很多基于 Skip-gram 语言模型的工作,HIN2Vec 的核心是一个神经网络模型,不仅能够学习网络中节点的表示,同时还学到了关系(元路径)的表示。 

同时论文还对异质信息网络中表示学习的一些问题做了研究实验,例如:元路径向量的正则化、负采样过程中节点的选择以及随机游走中的循环序列问题。

Introduction

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值