在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。
在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。
点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。
这是 PaperDaily 的第 18 篇文章本期推荐的论文笔记来自 PaperWeekly 社区用户 @YFLu。这篇论文发表在刚刚结束的 2017CIKM 会议上,论文提出了一种针对异质信息网络的表示学习框架 HIN2Vec。
不同于之前很多基于 Skip-gram 语言模型的工作,HIN2Vec 的核心是一个神经网络模型,不仅能够学习网络中节点的表示,同时还学到了关系(元路径)的表示。
如果你对本文工作感兴趣,点击底部的阅读原文即可查看原论文。
关于作者:陆元福,北京邮电大学计算机系硕士生,研究方向为异质信息网络的表示学习。
■ 论文 | HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning
■ 链接 | https://www.paperweekly.site/papers/1182
■ 作者 | YFLu
HIN2Vec 是一篇关于异质信息网络中的表示学习的论文,发表在刚刚结束的 2017CIKM 会议上。这篇论文和我最近的工作有一些相似之处,一些想法甚至有些相同,同样有很多地方值得借鉴。
论文提出了一种针对异质信息网络的表示学习框架 HIN2Vec,不同于之前很多基于 Skip-gram 语言模型的工作,HIN2Vec 的核心是一个神经网络模型,不仅能够学习网络中节点的表示,同时还学到了关系(元路径)的表示。
同时论文还对异质信息网络中表示学习的一些问题做了研究实验,例如:元路径向量的正则化、负采样过程中节点的选择以及随机游走中的循环序列问题。