KDD 18论文解读 | 斯坦福大学提出全新网络嵌入方法 — GraphWave

本文介绍了斯坦福大学在KDD '18发表的GraphWave,这是一种无监督学习方法,用于根据网络结构相似性学习节点嵌入。GraphWave不依赖人工特征,而是利用热小波扩散模式学习节点的结构表示,即使节点位于网络的不同部分,也能捕捉到相似的局部结构。实验结果显示,GraphWave能够有效地识别和区分不同结构角色的节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

640

640?


在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。


在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。


点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。

这是 PaperDaily 的第 100 篇文章

本期推荐的论文笔记来自 PaperWeekly 社区用户 @xuehansheng本文是斯坦福大学发表于 KDD ’18 的工作,论文提出了一种通过利用热小波扩散模式、通过低维嵌入来表示每个节点的网络邻域的方法——GraphWave。 


GraphWave 不是在手工选择的特征上进行训练,而是以无人监督的方式学习这些嵌入。文章在数学上证明具有相似网络邻域的节点将具有类似的 GraphWave 嵌入,即使这些节点可能驻留在网络的非常不同的部分中。

如果你对本文工作感兴趣,点击底部阅读原文即可查看原论文。

关于作者:薛寒生,澳大利亚国立大学博士生,研究方向为人工智能与计算生物学。

■ 论文 | Learning Structural Node Embeddings via Diffusion Wavelets

■ 链接 | https://www.paperweekly.site/papers/2204

■ 源码 | https://github.com/snap-stanford/graphwave


论文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值