在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。
在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。
点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。
这是 PaperDaily 的第 100 篇文章本期推荐的论文笔记来自 PaperWeekly 社区用户 @xuehansheng。本文是斯坦福大学发表于 KDD ’18 的工作,论文提出了一种通过利用热小波扩散模式、通过低维嵌入来表示每个节点的网络邻域的方法——GraphWave。
GraphWave 不是在手工选择的特征上进行训练,而是以无人监督的方式学习这些嵌入。文章在数学上证明具有相似网络邻域的节点将具有类似的 GraphWave 嵌入,即使这些节点可能驻留在网络的非常不同的部分中。
如果你对本文工作感兴趣,点击底部阅读原文即可查看原论文。
关于作者:薛寒生,澳大利亚国立大学博士生,研究方向为人工智能与计算生物学。
■ 论文 | Learning Structural Node Embeddings via Diffusion Wavelets
■ 链接 | https://www.paperweekly.site/papers/2204
■ 源码 | https://github.com/snap-stanford/graphwave