KDD 18 论文解读 | GraphWave:一种全新的无监督网络嵌入方法

本文介绍了斯坦福大学在 KDD 18 发表的 GraphWave 论文,这是一种无监督的网络嵌入技术,通过热小波扩散模式捕捉节点的网络邻域。GraphWave 不依赖人工特征,能够学习到相似网络邻域节点的相似嵌入,适用于大规模网络。实验结果显示,GraphWave 在多种图形结构中表现出对结构等效节点的有效区分。
摘要由CSDN通过智能技术生成

640

640?


在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。


在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。


点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。

这是 PaperDaily 的第 119 篇文章

作者丨薛寒生

学校丨澳大利亚国立大学博士生

研究方向丨人工智能与计算生物学


本期推荐的论文笔记来自 PaperWeekly 社区用户 @xuehansheng ,本文是斯坦福大学发表于 KDD 18 的工作,论文提出了一种通过利用热小波扩散模式通过低维嵌入来表示每个节点的网络邻域的方法——GraphWave。 


GraphWave 不是在手工选择的特征上进行训练,而是以无人监督的方式学习这些嵌入。文章在数学上证明具有相似网络邻域的节点将具有类似的 GraphWave 嵌入,即使这些节点可能驻留在网络的非常不同的部分中。


640


640


论文动机


驻留在图的不同部分中的节点可能在其本地网络拓扑中具有类似的结构角色。然而学习节点的结构表示是一项具有挑战性的无监督学习任务,其通常涉及为每个节点人工指定和定制拓扑特征。 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值