不用L约束又不会梯度消失的GAN,了解一下?

本文介绍了作者提出的GAN-QP框架,这是一种新型的GAN,无需像WGAN那样使用L约束,同时避免了SGAN的梯度消失问题。GAN-QP在实验中展现出与WGAN相当甚至更好的性能,特别是在高分辨率人脸生成任务上。该框架基于平方势散度,其判别器自动满足L约束,解决了WGAN的约束问题,且对超参数λ具有鲁棒性。
摘要由CSDN通过智能技术生成

640


作者丨苏剑林

单位丨广州火焰信息科技有限公司

研究方向丨NLP,神经网络

个人主页丨kexue.fm


不知道从什么时候开始,我发现我也掉到了 GAN 的大坑里边了,唉,争取早日能跳出来。


本文介绍的是我最近提交到 arXiv 的一个关于 GAN 的新框架,里边主要介绍了一种对概率散度的新理解,并且基于这种理解推导出了一个新的 GAN。整篇文章比较偏理论,对这个 GAN 的相关性质都做了完整的论证,自认为是一个理论完备的结果。


640


640


先摆结论:


1. 论文提供了一种分析和构造概率散度的直接思路,从而简化了构建新 GAN 框架的过程;


2. 推导出了一个称为 GAN-QP 的 GAN 框架,这个 GAN 不需要像 WGAN 那样的 L 约束,又不会有 SGAN 的梯度消失问题,实验表明它至少有不逊色于、甚至优于 WGAN 的表现。


640

 GAN-QP效果图


论文的实验最大做到了 512 x 512 的人脸生成(CelebA HQ),充分表明了模型的有效性(效果不算完美,但是模型特别简单)。有兴趣的朋友,欢迎继续阅读下去。


直面对偶空间


我们现在要构建一个 GAN 框架,一般包含三个步骤:


  • 寻求一种良好的概率散度;

  • 找出它的对偶形式; 

  • 转化为极小-极大游戏(min-max game)。


问题是:真正对训练过程有用的是第二、第三步,第一步并不是那么必要。


事实上,从原空间要定义一个新的散度很难,定义了之后也不一定容易转化为对偶形式。然而,我们可以直接在对偶空间分析,由此可以发现一批新的、形态良好的散度。换言之,我们其实可以直接在对偶空间中论述一个式子是否满足散度的定义,从而直接给出可优化的目标,而不需要关心它具体是 JS 散度还是 W 距离了。


下面我们来举例说明这个思路。


散度


首先我们来给出散度的定义:


如果 D[p,q] 是关于 p,q 的标量函数,并且满足:


  • D[p,q]≥0 恒成立;

  • D[p,q]=0⇔p=q。


那么称 D[p,q] 为 p,q 的一个散度,散度与“距离”的主要差别是散度不用满足三角不等式,也不用满足对称性。但是散度已经保留了度量差距的最基本的性质,所以我们可以用它来度量 p,q 之间的差异程度。


SGAN


基本定义


  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
循环神经网络(RNN)梯度消失/爆炸问题是由于反向传播过程链式法则导致的,当网络深度增加时,激活函数的导数可能非常小(如sigmoid),使得浅层单元的权重更新极其微弱(梯度消失),而如果导数很大(如ReLU的导数在正值区域恒定),则深层单元可能会经历异常大的权重更新(梯度爆炸)。 为解决这个问题,RNN引入了几种策略: 1. **长期短期记忆(LSTM, Long Short-Term Memory)**[^4]:LSTM通过门控机制(包括输入门、遗忘门和输出门)来控制信息的流动,特别是通过一个称为细胞状态的记忆单元,可以有效地缓解梯度消失问题。 2. **门控循环单元(GRU, Gated Recurrent Unit)**[^5]:与LSTM类似,GRU减少了部分门的数量,但同样利用门来控制信息流,从而减少梯度消失的可能性。 3. **梯度裁剪(Gradient Clipping)**[^6]:这是一种简单的方法,设置一个阈值,当梯度的范数超过这个阈值时,将其缩放到该阈值以内,以防止梯度过大导致爆炸。 4. **初始化权重**:合适的权重初始化策略,如Xavier或He初始化,可以帮助网络更稳定地学习。 5. **残差连接(Residual Connections)**[^7]:虽然不直接针对梯度问题设计,但在深度RNN添加跨层的直接路径,可以让梯度更容易通过网络传递。 \[ ^4 \] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. \[ ^5 \] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. \[ ^6 \] Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. International conference on machine learning, 1319-1327. \[ ^7 \] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值