©PaperWeekly 原创 · 作者|孙裕道
学校|北京邮电大学博士生
研究方向|GAN图像生成、情绪对抗样本生成
引言
年龄和性别在社会交往中起着基础性的作用。随着社交平台和社交媒体的兴起,自动年龄和性别分类已经成为越来越多应用程序的相关内容。本文会盘点出近几年来关于深度年龄和性别识别的优质论文。
CVPR 2015
论文标题:Age and Gender Classification using Convolutional Neural Networks
论文来源:CVPR 2015
论文链接:https://www.sci-hub.ren/10.1109/CVPRW.2015.7301352
代码链接:https://github.com/GilLevi/AgeGenderDeepLearning
1.1 模型介绍
在该论文是第一篇将深度学习引入到年龄和性别的分类任务中,作者证明通过使用深卷积神经网络的学习表示,可以显著提高年龄和性别的分类任务的性能。因此,该论文提出了一个卷积网络架构,即使在学习数据量有限的情况下也可以使用。
从社交图像库收集一个大的、带标签的图像训练集,用于年龄和性别估计,需要访问图像中出现的对象的个人信息,这些信息通常是私有的,或者手动标记既繁琐又耗时。因此,用于从真实社会图像中估计年龄和性别的数据集在大小上相对有限。当深度学习的方法应用于如此小的图像采集时,过拟合是一个常见的问题。
如下图所示,为作者提出的一个简单的 CNN 网络架构,该网络包含三个卷积层,每个卷积层后面都有一个校正的线性运算和池化层。前两层使用对参数进行正则化操作。
第一卷积层包含 96个7×7 像素的卷积核,第二个卷积层包含 256 个 5×5 像素的卷积核,第三层和最后一层包含 384 个 3×3 像素的卷积核。最后,添加两个全连接层,每个层包含 512 个神经元。
在训练网络的过程中,作者还应用了两种额外的方法来进一步限制过度拟合的风险。第一个是 dropout 学习(即随机设置网络神经元的输出值为零)。该网络包括两个 dropout 层,丢失率为 0.5(将神经元的输出值设为零的几率为 50%)。
第二个是使用数据增强技术,从 256×256 的输入图像中随机抽取 227×227 个像素,并在每个前后训练过程中随机镜像。这与使用的多种裁剪和镜像变体类似。
1.2 实验结果
作者使用 Adience 数据集进行基准测试 CNN 设计的准确性,该数据集是为年龄和性别分类而设计的。Adience 集包括从智能手机设备自动上传到 Flickr 的图像。
因为这些图片是在没有事先人工过滤的情况下上传的,就像媒体网页或社交网站上的典型情况一样。整个 Adience 收藏包括 2284 个受试者的大约 26K 张图片。如下表所示列出了收集到的不同性别和年龄组的分类情况。