27 页综述,354 篇参考文献!史上最详尽的视觉定位综述,内容覆盖过去十年的视觉定位发展总结,尤其对最近 5 年的视觉定位论文系统性回顾,内容既涵盖传统基于检测器的视觉定位,基于 VLP 的视觉定位,基于 MLLM 的视觉定位,也涵盖从全监督、无监督、弱监督、半监督、零样本、广义定位等新型设置下的视觉定位。
论文题目:
Towards Visual Grounding: A Survey
工作内容:
视觉定位(Visual Grounding)任务十年发展系统性回顾
论文链接:
https://arxiv.org/pdf/2412.20206
代码/仓库链接:
https://github.com/linhuixiao/Awesome-Visual-Grounding
摘要
视觉定位(Visual Grounding)也被称为指代表达文本理解(Referring Expression Comprehension)和短语定位(Phrase Grounding)。它涉及根据给定的文本描述在图像中定位自然数量的特定区域。
该任务的目标是模拟社会对话中普遍存在的指代关系,使机器具有类似人类的多模态理解能力。因此,视觉定位在各个领域有着广泛的应用。然而,自 2021 年以来,视觉定位取得了重大进展,比如,基于定位的预训练、定位多模态大语言模型、广义视觉定位、多图片定位、千兆像素定位等新概念不断涌现,带来了许多新的挑战。
在本综述中,我们首先回顾了视觉定位的发展历史,并概述了基本的背景知识,包括视觉定位的基本概念和评估指标。我们系统地跟踪和总结了当前视觉定位的发展,并精心整理了各种已有的设置,并建立了这些设置的精确定义,以规范未来的研究并确保不同方法之间公平的比较。
此外,我们深入讨论了几个高级话题,并强调了视觉定位的许多应用。在数据集部分,我们编制了当前相关数据集的列表,同时在 RefCOCO/+/g 系列数据集上进行了公平的比较分析,并提供了最终的性能预测,以启发未来新的标准测试基准的提出。
最后,我们总结了视觉定位当前所面临的挑战,并为未来的研究提出有价值的方向,这可能为后续的研究人员提供启发。本综述通过提取常见的技术细节的方式进行叙述,进而以涵盖过去十年中每个子主题的代表性工作。
据我们所知,本文是目前视觉定位领域最全面的综述。本文不仅使适用视觉定位的入门研究者,也适用于资深的研究人员用于跟踪最新的研究进展。
综述流程
在本综述中,本文在第 1 章简要地回顾了视觉定位的发展历史和当前存在的问题。在第 2 章中,我们将介绍背景知识,包括任务定义、评价标准和强相关的研究领域。
然后,在第 3 章中,我们将从任务设置的视角出发,分别从全监督、弱监督、半监督、无监督、零样本、广义视觉定位新型设置等 6 个方面对当前的研究进行系统性回顾,并比较了不同任务设置下基准测试的结果。特别是全监督设置,其作为主流的设置将会在第 3 章中进行重点介绍。
随后,我们在第 4 章介绍了经典的数据集和新型数据集。最后,我们在第 5 章指出当前的挑战和未来的发展方向,并在第 6 章中进行了总结。
贡献
(i) 本文是近五年来第一个系统跟踪和总结近十年视觉定位发展的综述。通过提取常见的技术细节,本综述涵盖了每个子主题中最具代表性的工作。
(ii) 本文根据视觉定位中出现的各种各样的设置做了系统的梳理,并对各种设置做了严格的定义,用以规范后续视觉定位的研究,以便获得公平公正的比较。
(iii) 本文对近些年的数据集进行了整理,并对视觉定位中五个经典的数据集进行了极限预测,以启发新的标准基准的出现。
(iv) 本文对当前的研究难点进行了总结,并对后续的视觉定位的研究提供了有价值的研究方向,用以启发后续研究者的思考。
(v) 据我们所知,这篇综述是目前在视觉定位领域最全面的综述。作者希望本文不仅可以助力于新手入门 Grounding,也希望可以帮助有一定研究基础的人对当前的研究进行梳理,使他们能够跟踪并对最新的进展保持了解。
最后,由于视觉定位领域正在迅速发展,本文可能不可能跟上所有最新的发展。作者欢迎研究人员与他们联系,与他们分享在这一领域的新发现,以便本文可跟踪最新进展。这些新的工作将被纳入修订版本并进行讨论。同时作者也会更新和维护论文的项目仓库:
https://github.com/linhuixiao/Awesome-Grounding
▲ 图1. 视觉定位任务简要示意图
▲ 图2. 视觉定位任务近十年发展趋势
▲ 图3. 视觉定位综述论文结构
▲ 图4. 当前主流视觉定位设置差异对比示意图
▲ 图5. 广义视觉定位示意图
▲ 图6. 全监督视觉定位的五种技术路线及近十年发展中的两个主要阶段
▲ 图7. 全监督视觉定位的五种代表性模型框架
▲ 图8. 全监督视觉定位按三种实验设置进行划分的SoTA结果对比
▲ 图9. 传统视觉定位中一阶段和二阶段处理流程对比
▲ 图10. 全监督视觉定位、传统零样本视觉定位和开发词汇零样本视觉定位对比
▲ 图11. NLP 自然语言解析在视觉定位中的应用
▲ 图12. RefCOCO/+/g 数据集差异对比及统计信息
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
·
·
·