Token刺客来袭!AgentPrune一键屏蔽废话智能体,成本暴降60%性能翻盘

独木不成林,但“人多嘴杂”也未必是好事!随着基于大型语言模型(LLM)的多智能体系统逐渐成为解决复杂问题的主流方案,一个令人头疼的问题也随之而来:多智能体之间的通信冗余。想象一下,一个团队里每个人都想发言,但大部分内容其实毫无意义,不仅浪费时间,还增加了沟通成本。

好消息是,这个问题终于有了解决方案!

由同济大学、香港中文大学、北卡罗来纳大学等机构联合提出的 AgentPrune,首次通过“多智能体剪枝”技术,为多智能体系统量身打造了一种经济高效、简洁强大的通信框架。不仅能大幅降低通信开销,还能提升系统的鲁棒性和任务完成效率。论文现已经被 ICLR 2025 接收。

相关论文

论文标题:

Cut the Crap: An Economical Communication Pipeline for LLM-based Multi-Agent Systems

作者单位:

1. 同济大学 2.香港中文大学 3.北卡教堂山分校 4.武汉大学 5. 南洋理工大学 6. 上海人工智能实验室

论文链接:

https://openreview.net/forum?id=LkzuPorQ5L

代码链接:

https://github.com/yanweiyue/AgentPrune

背景介绍

基于大模型的多智能体系统(LLM-based Multi-agent System, LLM-MAS)通过团队协作解决复杂问题的潜力毋庸置疑,但现有的通信机制却存在一个致命问题:通信冗余。

简单来说,就是智能体之间的大部分通信内容对任务解决毫无帮助,反而导致了巨大的经济成本和计算开销。

举个例子:  

  • 一个简单的数学问题(举个极端一点的例子,“1+1=?”),可能只需要两个智能体的一轮轮对话就能解决,但现有系统(譬如 LLM-Debate,DyLAN)却让所有智能体(5-10 个)都参与讨论,导致通信量暴增、Token 消耗量巨大。

  • 更糟糕的是,这种冗余通信还可能被恶意利用,成为对抗性攻击的突破口。

为了解决这一问题,AgentPrune 提出了一个创新的解决方案:通过“剪枝”技术,直接剔除那些冗余甚至有害的通信内容,只保留最关键的交流。具体来说,本文首先进行了一个前瞻实验,在 LLM-Debate 框架上进行随机剪枝,实验结果如下:

可以看到,即使是随机剪枝,在较低细稀疏度的时候也不会造成性能下降,相反还能带来性能增益!这让我们开始思考:是否主流的多智能体系统中都存在通讯的冗余现象呢?

为了解决这样的挑战,本文首先形式化地定义了多智能体的通讯冗余问题:对于任意基于大语言模型的多智能体通信图  ,下列条件恒成立:

此处   表示衡量系统求解质量的效用函数。通信拓扑中的冗余成分  ,被定义为 LLM-MAS 系统中的通信冗余。

时空图视角下的 LLM-MAS

本文首创地将多智能体系统建模为一个时空图  ,其中:

  •  是节点集合,每个节点   表示一个智能体,包含其语言模型实例(Base)、角色(Role)、状态(State)和插件(Plugins)。

  •  是边集合,分为两类:

    • 空间边(Intra-dialogue edges):表示同一轮对话中智能体之间的通信。

    • 时间边(Inter-dialogue edges):表示跨轮对话中智能体之间的通信。

智能体的时空邻居分别被定义为   和 

为了确保智能体之间的通信有序进行,AgentPrune 强制空间通信图   为一个有向无环图(DAG)。通过拓扑排序,系统能够按照依赖关系依次处理每个智能体的输出,避免通信混乱。

在每轮对话中,智能体   的输出   由以下因素决定:

其中,智能体的输出依赖于查询  、角色、状态以及来自时间和空间邻居的消息。

本文为主流的 LLM-MAS 的执行逻辑提供如下的通用描述:

AgentPrune

4.1 通讯图优化

AgentPrune 的核心思想是将多智能体系统的通信结构建模为一个时空图,并通过可训练的图掩码来优化通信连接。具体来说,AgentPrune 将原始的二值通信图(表示是否存在通信连接)转换为参数化图掩码:

参数化图掩码通过如下目标训练:

优化目标具体分为下述两部分:

  • 分布近似:确保图掩码能够准确反映通信连接的重要性。通过策略梯度方法,AgentPrune 能够最大化系统的效用,同时最小化通信冗余。

  • 低秩稀疏性:通过低秩约束,AgentPrune 促使通信结构更加稀疏,从而剔除冗余、噪声甚至恶意消息。研究表明,低秩图结构对网络攻击具有更强的鲁棒性。

4.2 一次性剪枝

AgentPrune 在训练初期对图掩码进行有限次优化,然后通过一次性剪枝剔除不重要的通信连接。具体来说,AgentPrune 根据图掩码的大小选择保留一定比例的最重要连接,从而生成一个稀疏的通信图:

在后续的通信过程中,多智能体系统将严格遵循这个优化后的通信图进行消息传递,从而显著降低通信成本,同时保持高效的性能。

AgentPrune 的框架图如下所示:

实验分析

5.1 性能分析

本文首先将 AgentPrune 与简单的 LLM-MAS 拓扑进行结合,包括随机图,完全图,层次图等,在 MMLU、GSM8K、HumanEval 等 benchmark 上与 16 个 baseline 进行充分的比较:

可以看到在多个 benchmark 上 AgentPrune-C (即 AgentPrune 与完全图结构结合)都获得了最优或次优的性能。

5.2 即插即用

考虑到 AgentPrune 作为一个即插即用的插件,我们将 AgentPrune 与两个主流的 LLM-MAS:GPTSwarm [1] 以及 AutoGen [2] 进行结合:

  • 在 MMLU 数据集上,AgentPrune 仅需   的成本,就能达到传统方法   的性能水平。

  • 在 HumanEval 代码生成任务中,AgentPrune 将提示词成本降低到 64%,同时性能提升了 1.24%。

  • 在 GSM8K 数学推理任务中,AgentPrune 将提示词 token 降低了 60% 以上,性能提升了 2.79%。

5.3 案例展示

我们对于 AgentPrune 对于时间通讯和空间通讯的可视化如下:

我们对于参数化图掩码的训练动态可视化如下,可以观察到,随着迭代进行,参数化时空图快速收敛至稳定:

参考文献

[1] GPTSwarm: Language Agents as Optimizable Graphs, ICML 2024

[2] AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation, COLM 2024

更多阅读

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值