快乐的sublime编辑器(笔记)

sublime快捷键

  1. 按住ctrl键,点击鼠标:支持多个编辑点。
  2. esc:跳出多点编辑。
  3. ctrl+p:快速打开另一个文件,文件名后+:输入编辑点的行数,+@输入编辑点的函数名,+#:查找字符串,使编辑点到达指定位置。
  4. ctrl+shift+P:可直接输入命令(会有快捷键说明)。输入命令keybindings-default,会出现所有的快捷键。 命令reindent lines:很快调整缩进。
  5. ctrl++或-:放大或缩小字体。
  6. ctrl+n:创建一个新的页面。
  7. ctrl+tab:页面之间作跳转。
  8. ctrl+j:合并两行。
  9. ctrl+enter:在本行之下开辟一个新行。
  10. shift+ctrl+enter:在本行之上开辟一个新行。
  11. ctrl+z:撤销操作。
  12. alt+向左或向右箭头:光标每次向左或向右跳转一个单词。
  13. ctrl+向左或向右箭头:光标跳转到本行最左边或最右边。
  14. shift+alt+向左箭头:选中一个单词。
  15. shift+alt+向右箭头:撤销选中。
  16. shift+ctrl+向左或向下箭头:光标所在位置往左或往下全选。
  17. shift+ctrl+向右箭头:撤销选中。
  18. ctrl+A:全选。
  19. ctrl+s:保存。
  20. ctrl+F:打开搜索框,在本文件中查找字符串。
  21. enter:查找下一处。
  22. shift+enter:查找上一处。
  23. ctrl+d,ctrl+d……..:进行多点编辑。
  24. esc:隐藏搜索框,停留在这个点进行编辑。
  25. ctrl+-:跳回原编辑点。
  26. tab:补齐。
  27. ctrl+k+b:打开侧边栏。

安装sublime插件

在命令面板中输入install,选中package control:install package。

  1. 安装颜色主题:在命令面板中输入railscast,选中railscasts colour scheme。
  2. 应用新安装的颜色主题:sublime text-preferences-color scheme-railscasts colour scheme。
  3. advancednewfile包:目录层级比较多的时候,新建一个文件,敲alt+ctrl+n打开对话框之后,输入新创建的文件名,敲回车之后即可直接打开输入内容。
  4. git包:实现git版本控制的相关操作。
  5. syncedsidebar包:每次打开一个新的文件,侧边栏都会同步地显示该文件具体在目录数中的位置
  6. emmet插件:代码补全功能。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值