poj -1679 次最小生成树

Given a connected undirected graph, tell if its minimum spanning tree is unique. 

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic. 

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

 

算是一道比较直白的次最小生成树题

本题比较靠谱的解法是用次小生成树解。

具体思想可参考:http://blog.csdn.net/jarily/article/details/8912538

以下分析也转自上面的博客。代码按照自己的风格重写了。

基于 Kruscal 的写法可以参考 http://yzmduncan.iteye.com/blog/1018358

题目大意:
 *给出一个连通无向图,判断它的最小生成树是否唯一;
 *如果唯一,输出生成树的大小,否则输出"Not Unique!";
 *
 *算法思想:
 *本题可以尝试求与最小生成树权值相等的树是否存在;
 *但是更好的思路是直接求次小生成树,如果次小生成树等于最小生成树;
 *则说明最小生成树不唯一,否则最小生成树一定是唯一的;

具体 的参考,个人认为比较详细

 

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;i++)
typedef long long ll;
const int _=0x3f3f3f3f;
int e[110][110];
bool used[110][110];
int pmax[110][110];
int dis[110];
int n,m;
bool book[110];
int pre[110];//存放先驱节点,因为你将一个点加入到MST中,必须要经过先驱节点
int prime()
{
    int res=0;
    memset(book,0,sizeof book);
    rep(i,1,n)
    dis[i]=e[1][i],pre[i]=1;
    book[1]=1;
    rep(i,1,n-1)
    {
        int k;int minn=_;
        rep(j,1,n)
        if(dis[j]<minn&&!book[j])
            k=j,minn=dis[j];
        book[k]=1;
        res+=minn;
        used[k][pre[k]]=used[pre[k]][k]=true;//说明将从哪到哪个点的路径加入到MST中
        rep(l,1,n)
        {
            if(book[l]&&l!=k) pmax[k][l]=pmax[l][k]=max(pmax[pre[k]][l],dis[k]);//求k->j的路径上的最大边是多少
            if(book[l]==0&&dis[l]>e[l][k])
                dis[l]=e[l][k],pre[l]=k;
        }
    }
    return res;
}
int main()
{
    ios::sync_with_stdio(0);cin.tie(0);
    int t;cin>>t;
    while(t--)
    {
        memset(e,_,sizeof e);
        memset(used,0,sizeof used);
        cin>>n>>m;
        int sum=0;
        rep(i,1,m)
        {
            int x,y,z;cin>>x>>y;
         cin>>e[x][y];e[y][x]=e[x][y];
         e[x][x]=0;e[y][y]=0;
        }
        //sort(num,num+sum);
        ll ans1=prime();
        ll ans2=_;
        rep(i,1,n)
        rep(j,i+1,n)
        {
            if(!used[i][j]&&e[i][j]<_)//从没有加入到MST中选择一条最小的,同时去掉i->j这条
                ans2=min(ans2,ans1+e[i][j]-pmax[i][j]);//路径的最大值
        }
        //cout<<ans2<<endl;
        if(ans1==ans2)
            cout<<"Not Unique!"<<endl;
        else cout<<ans1<<endl;
    }
}

下面是另一种,通过将加入MST中的边枚举有相同权值的边,一次一次的更换树的权值

#include <bits/stdc++.h>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int N=11000;
const int M=15005;
int n,m,cnt;
int parent[N];
bool flag;
struct man {
    int u,v,w;
    int eq;//代表是否有相同权值的边
     int  used;//代表是否用过
     int   del;//代表删除与否
} edg[N];
bool cmp(man g,man h) {
return g.w<h.w;
}
void init() {
    for(int i=0; i<=10005; i++) {
        parent[i]=i;
    }
}
int Find(int x) {
    if(parent[x] != x) parent[x] = Find(parent[x]);
    return parent[x];
}//查找并返回节点x所属集合的根节点
void Union(int x,int y) {
    x = Find(x);
    y = Find(y);
    if(x == y) return;
    parent[y] = x;
}//将两个不同集合的元素进行合并
int Kruskal() {
    init();
   int sum=0;
   int num=0;
   for(int i=0;i<m;i++){
    if(edg[i].del==1)continue;
    int u=edg[i].u;int v=edg[i].v;int w=edg[i].w;
 
    if(Find(u)!=Find(v)){
        sum+=w;
        if(!flag)edg[i].used=1;//标记这条边有纳入生成树中 
        num++;
        Union(u,v);
    }
    if(num>=n-1)break;
   }
   return sum;
}
int main() {
    int t,d;
    cin>>t;
    while(t--) {
        cnt=0;
        cin>>n>>m;
        for(int i=0; i<m; i++) {
            cin>>edg[i].u>>edg[i].v>>edg[i].w;
            edg[i].del=0;
            edg[i].used=0;
            edg[i].eq=0;//一开始这个地方eq没有初始化,WA了好几发,操
        }
        for(int i=0;i<m;i++){
            for(int j=0;j<m;j++){
                if(i==j)continue;
                if(edg[i].w==edg[j].w)edg[i].eq=1;//把有相等的边标记 
            }
        }
        sort(edg,edg+m,cmp);
        flag=false;
        cnt=Kruskal();
        flag=true;
        bool gg=false;
        for(int i=0;i<m;i++){
            if(edg[i].used==1&&edg[i].eq==1){ //判断 如果这条边有在生成树中且有其他边与之相等 
                edg[i].del=1;//删除这条边 
                int s=Kruskal();//printf("%d %d\n",i,s);
                if(s==cnt){
                    gg=true;
                    printf("Not Unique!\n");
                    break;
                }
                edg[i].del=0; //取消删除标记 
            }
        }
        if(!gg)cout<<cnt<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值