题目描述
小花梨给出n个点,让k位同学对这n个点任意添加无向边,构成k张图。小花梨想知道对于每个点i,存在多少个点j(包括i本身),使得i和j在这k张图中都是连通的。
输入
第一行输入两个正整数n和k,分别表示点的个数和同学数。
接下来分成k部分进行输入,每部分输入格式相同。
每部分第一行输入一个整数ai,表示第i位同学连边的数目。
接下来ai行,每行两个正整数u,v,表示第i位同学将点u和点v之间进行连接。
可能会存在重边或者自环。(1≤n≤100000,1≤k≤10,1≤u,v≤n,0≤ai≤200000)
输出
输出n行,第i行输出在k张图中都和编号为i的点连通的点的数目(包括i本身)
input
4 2
3
1 2
1 3
2 3
2
1 2
3 4
output
2
2
1
1
分析:
第一种方法:并查集
根据题意,如果n个点在这k个图里面是连通的,那么他们的祖先都是一样的,什么意思呢,就是那样例来说:
我们定义并查集的数组为f数组,初始化数组
f | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 2 | 3 | 4 |
在第一个同学连完线之后得到数组是
f | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 1 | 1 | 4 |
重新初始化数组后
在第二个同学连完线之后得到数组是
f | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 1 | 3 | 3 |
那么,如果我们将这n个点的祖先每次都存下来,那么就会发现下面这个
1 | 2 | 3 | 4 |
---|---|---|---|
1->1 | 1->1 | 1->3 | 4->3 |
这样就会发现1号与2号是在在这2个子图中是连通的,因为每一次其祖先结点都是相同的,那么得到的祖先序列也是相同的,这里就是通过求祖先序列相同的个数来求得答案,当然你需要用到
map<vector ,int>
下面就AC的代码
#include <iostream>
#include <algorithm>
#include <string>
#include <map>
#include <cstring>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <set>
#include <stack>
using namespace std;
typedef long long ll;
const int N = 1e5+100;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const int MOD=1e9+7;
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Abs(x) ((x)>=0?(x):-(x))
vector<int> ve[N];
map<vector<int> ,int > ma;
int f[N];
int findf(int v){
return f[v]==v ? v:f[v]=findf(f[v]);
}
void Merge(int x1,int x2){
int t1=findf(x1);
int t2=findf(x2);
if(t1!=t2){
if(t1<t2) f[t2]=t1;
else f[t1]=t2;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLINE_JUDGE
int n,m,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) f[i]=i;
while(k--){
scanf("%d",&m);
while(m--){int u,v;
scanf("%d%d",&u,&v);
Merge(u,v);//归并祖先
}
for(int i=1;i<=n;i++){
ve[i].push_back(findf(i));//添加当前节点的祖先是谁
}
for(int i=1;i<=n;i++) f[i]=i;
}
for(int i=1;i<=n;i++){
ma[ve[i]]++;//查找当前点的祖先序列有没有相似的
}
for(int i=1;i<=n;i++)
printf("%d\n",ma[ve[i]]);
return 0;
}
当然这一道题目还可以用dfs搜索的方法去做,怎么去做呢?
拿样例来说
3
1 2
1 3
2 3
可以把1 2 3的颜色都设置为1,4的颜色设置为2
2
1 2
3 4
可以把1 2 的颜色设置为1,3 4 的颜色设置为2
所心情况就是这样
点 k1 k2
1 1 1
2 1 1
3 1 2
4 2 2
点1和点2相同表示它们都有两个点相连,点3和点4各1个
#include <iostream>
#include <algorithm>
#include <string>
#include <map>
#include <cstring>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <set>
#include <stack>
using namespace std;
typedef long long ll;
const int N = 1e5+10;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const int MOD=1e9+7;
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Abs(x) ((x)>=0?(x):-(x))
vector<int>color[N],e[N];
map<vector<int>,int>num;
int cnt;
bool vis[N];
void dfs(int x){
vis[x]=1;
color[x].push_back(cnt);
for(int i=0;i<e[x].size();i++)
if(!vis[e[x][i]]) dfs(e[x][i]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLINE_JUDGE
int n,k,m;
scanf("%d%d",&n,&k);
while(k--){int u,v;
scanf("%d",&m);
while(m--){
scanf("%d%d",&u,&v);
e[u].push_back(v);
e[v].push_back(u);
}
cnt=0;
for(int i=1;i<=n;i++)
if(!vis[i]) cnt++,dfs(i);
rep(i,1,n) e[i].clear(),vis[i]=false;
}
for(int i=1;i<=n;i++){
num[color[i]]++;
}
rep(i,1,n)
printf("%d\n",num[color[i]]);
return 0;
}
其实这两种方法的本质都是去找一个序列,然后将相同的序列加起来,这样得到的就是答案