斐波那契数列
形如数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:
F(n)=F(n-1)+F(n-2)
通项公式:
求和公式:
Sn=2An+A(n-1) - 1 = A(n+2) -1
等差数列:
形如数列:1, 2, 3, 4, 5, 6, ...
则其前n项求和公式如下:
其中
a
1
=
第
一
项
,
a
n
=
最
后
一
项
,
d
=
差
值
a_1=第一项,a_n=最后一项 , d=差值
a1=第一项,an=最后一项,d=差值
等比数列:
数列形如:
1, 2, 4, 8, 16, 32, ...
通用公式:
求和公式:
以上就是在分析算法复杂度时,常用的数列求和公式和通用项描述。
另外算法的时间复杂度很多都用包含O(logN)这样的描述,但是却没有明确说logN的底数究竟是多少。这是因为n趋于无穷大时,logx(n)/logy(n)的极限可以发现,极限等于lny/lnx,也就是一个常数,所以从研究算法的角度log的底数不重要。