A Survey on Fairness in Large Language Models

828 篇文章

已下架不支持订阅

本文详述了大型语言模型(LLM)在训练数据中捕获社会偏见的问题,及其对下游任务的潜在影响。研究涵盖了LLM的内在和外在偏差评估,以及去偏方法。尽管取得了一些进展,但LLM的公平性仍面临挑战,需要在评估、理解和去偏方面加强工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《A Survey on Fairness in Large Language Models》的翻译。

摘要

大型语言模型(LLM)已经显示出强大的性能和发展前景,并在现实世界中得到了广泛的部署。然而,LLM可以从未处理的训练数据中捕捉社会偏见,并将这些偏见传播到下游任务。不公平的LLM制度具有不良的社会影响和潜在的危害。在本文中,我们对LLM中的公平性的相关研究进行了全面的综述。首先,对于中等规模LLM,我们分别从内在偏差和外在偏差的角度介绍了评估指标和去偏方法。然后,对于大规模LLM,我们介绍了最近的公平性研究,包括公平性评估、偏差原因和去偏差方法。最后,我们讨论并深入了解LLM公平发展的挑战和未来方向。

1 引言

2 评估度量

3 内在去偏

4 外部去偏

5 大型LLM的公平性

6 讨论

7 结论

我们对LLM中的公平性问题进行了全面的调查。社会偏见主要来源于包含有害信息和不平衡数据的训练数据,可分为内在偏见和外在偏见。我们总结了LLM的公平性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值