LLM Prompt
文章平均质量分 65
UnknownBody
AI博士,最近一直follow大模型相关论文,每日会更新学术界论文的进展。
展开
-
Autonomous Prompt Engineering in Large Language Models
提示工程是一项关键但具有挑战性的任务,用于优化大型语言模型 (LLM) 在自定义任务上的性能。这项开创性研究引入了自动提示工程工具箱 (APET),它使 GPT-41 能够自主应用提示工程技术。通过利用专家提示、思维链和思维树等复杂策略,APET 使 GPT-4 能够动态优化提示,从而在单词排序(增长 4.4%)和几何形状(增长 6.8%)等任务中取得重大改进。原创 2024-10-14 14:04:55 · 116 阅读 · 0 评论 -
A Universal Prompting Strategy for Extracting Process Model Information from Natural Language Text
在过去的十年中,人们致力于从文本过程描述中提取信息。尽管自然语言处理 (NLP) 取得了显著进步,但业务流程管理领域内的信息提取仍然主要依赖于基于规则的系统和机器学习方法。到目前为止,数据稀缺阻碍了深度学习技术的成功应用。然而,生成式大型语言模型 (LLM) 的快速发展使得无需大量数据即可以非常高的质量解决许多 NLP 任务成为可能。因此,我们系统地研究了 LLM 从文本过程描述中提取信息的潜力,旨在检测过程元素,例如活动和参与者,以及它们之间的关系。原创 2024-10-09 10:33:56 · 145 阅读 · 0 评论 -
500xCompressor: Generalized Prompt Compression for Large Language Models
提示压缩对于提高推理速度、降低成本和改善用户体验至关重要。然而,目前的方法面临着压缩比低和评估过程中可能的数据泄漏等挑战。为了解决这些问题,我们提出了 500xCompressor,这是一种将广泛的自然语言上下文压缩为至少一个特殊token的方法。500xCompressor 引入了大约 0.25% 的附加参数,并实现了 6 倍到 480 倍的压缩比。它旨在压缩任何文本,回答各种类型的问题,并且可以被原始的大型语言模型 (LLM) 使用,而无需微调。原创 2024-09-30 12:01:52 · 246 阅读 · 0 评论 -
A SURVEY OF PROMPT ENGINEERING METHODS IN LARGE LANGUAGE MODELS FOR DIFFERENT NLP TASKS
大型语言模型 (LLM) 在许多不同的自然语言处理 (NLP) 任务中表现出卓越的性能。提示工程在增加 LLM 的现有功能以在各种 NLP 任务上实现显着的性能提升方面发挥着关键作用。提示工程需要编写称为提示的自然语言指令,以结构化的方式从 LLM 中获取知识。与以前最先进的 (SoTA) 模型不同,提示工程不需要根据给定的 NLP 任务进行广泛的参数重新训练或微调,因此仅根据 LLM 的嵌入式知识进行操作。原创 2024-10-03 09:00:00 · 303 阅读 · 0 评论 -
Enhancing Robustness in Large Language Models: Prompting for Mitigating the Impact of Irrelevant
近年来,大型语言模型 (LLM) 因其在复杂推理任务中的卓越表现而受到广泛关注。然而,当问题描述包含不相关的信息时,即使使用高级提示技术,最近的研究也可能会显着削弱他们的推理能力。为了进一步研究这个问题,构建了一个包含不相关信息的小学数学问题数据集,名为 GSMIR。在此数据集上测试突出的 LLM 和提示技术表明,虽然 LLM 可以识别不相关的信息,但一旦识别出来,它们并不能有效减轻它造成的干扰。为了解决这一缺点,提出了一种新的自动构造方法 ATF,它增强了 LLM 识别和自我减轻不相关信息影响的能力。原创 2024-09-11 14:44:20 · 224 阅读 · 0 评论 -
Automatic Prompt Selection for Large Language Models
大型语言模型(LLM)可以通过适当的指令提示执行各种自然语言处理任务。然而,手动设计有效的提示既具有挑战性又耗时。现有的自动提示优化方法要么缺乏灵活性,要么效率低下。在本文中,我们提出了一种有效的方法,可以从有限的合成候选提示集中自动选择给定输入的最佳提示。我们的方法包括三个步骤:(1)对训练数据进行聚类,并使用基于LLM的提示生成器为每个聚类生成候选提示;(2) 合成输入提示输出元组的数据集,用于训练提示评估器根据提示与输入的相关性对提示进行排名;(3) 使用提示评估器在测试时为新输入选择最佳提示。原创 2024-08-28 09:21:14 · 176 阅读 · 0 评论 -
Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering
本文研究了在提示工程中整合领域特定知识,以提高科学领域中大型语言模型(LLM)的性能。一个基准数据集被精心策划,以封装小分子的复杂物理化学性质、它们对药理学的可药用性,以及酶和晶体材料的功能属性,强调其在生物和化学领域的相关性和适用性。所提出的领域知识嵌入提示工程方法在各种指标上优于传统的提示工程策略,包括能力、准确性、F1得分和幻觉下降。通过对包括麦克米兰催化剂、紫杉醇和锂钴氧化物在内的复杂材料的案例研究,证明了该方法的有效性。原创 2024-08-26 09:24:26 · 55 阅读 · 0 评论 -
Efficient Prompting Methods for Large Language Models: A Survey
提示已成为使大型语言模型(LLM)适应特定自然语言处理任务的主流范式。虽然这种方法为LLM的上下文学习打开了大门,但它带来了模型推理的额外计算负担和手动设计提示的人工工作,特别是在使用冗长复杂的提示来指导和控制LLM行为时。因此,LLM领域出现了高效提示方法的显著激增。本文对这些方法进行了全面的概述。从较高的层次上讲,高效的提示方法大致可分为两种:高效计算提示和高效设计提示。前者涉及各种压缩提示的方法,后者采用自动优化提示的技术。我们介绍了激励的基本概念,回顾了高效激励的进展,并强调了未来的研究方向。原创 2024-08-25 18:01:18 · 150 阅读 · 0 评论 -
Goal-guided Generative Prompt Injection Attack on Large Language Models
当前的大型语言模型(LLM)为大规模面向用户的自然语言任务提供了坚实的基础。大量用户可以通过用户界面轻松注入对抗性文本或指令,从而导致LLM模型安全挑战。尽管目前有大量关于提示注入攻击的研究,但这些黑盒攻击大多使用启发式策略。目前尚不清楚这些启发式策略如何与攻击的成功率相关,从而有效地提高模型的鲁棒性。为了解决这个问题,我们重新定义了攻击的目标:最大化干净文本和对抗文本的条件概率之间的KL分歧。此外,我们证明了最大化KL散度等价于最大化嵌入表示x和x′之间的马氏距离。原创 2024-08-06 21:22:07 · 295 阅读 · 0 评论 -
Prompt Selection and Augmentation for Few Examples Code Generation in Large Language Model
小样本提示和逐步推理增强了大型语言模型(LLM)处理包括代码生成在内的复杂任务的能力。在本文中,我们介绍了一种提示选择和增强算法,旨在改进数学推理和机械臂操作。我们的方法结合了一个多阶段的示例扩充方案和一个示例选择方案。该算法通过选择一组例子来提高LLM的性能,这些例子增加了多样性,最大限度地减少了冗余,并增加了与问题的相关性。当与思维程序提示相结合时,我们的算法在GSM8K和SVAMP基准测试上的性能有所提高,分别提高了0.3%和1.1%。原创 2024-07-07 11:49:27 · 119 阅读 · 0 评论 -
Can LLMs Separate Instructions From Data? And What Do We Even Mean By That?
指令调优的大型语言模型(LLM)在许多实际应用中显示出令人印象深刻的结果,但它们缺乏计算机科学其他领域常见的基本安全功能,特别是指令和数据的明确分离。这使得它们容易受到诸如间接提示注入之类的操作的影响,并且通常不适合于安全关键任务。令人惊讶的是,目前还没有确定的定义或基准来量化这一现象。在这项工作中,我们通过引入一种正式的指令数据分离措施和一种可从模型输出中计算的经验变量来缩小这一差距。我们还提供了一个新的数据集SEP,它允许估计真实世界模型的度量。原创 2024-06-24 14:44:38 · 36 阅读 · 0 评论 -
Automatic and Universal Prompt Injection Attacks against Large Language Models
大型语言模型(LLM)擅长处理和生成人类语言,其解释和遵循指令的能力为其提供了动力。然而,它们的能力可以通过提示注入攻击加以利用。这些攻击操纵LLM集成应用程序生成与攻击者注入的内容一致的响应,从而偏离用户的实际请求。这些袭击带来的巨大风险凸显了对这些威胁进行彻底了解的必要性。然而,这一领域的研究面临着挑战,因为缺乏针对此类攻击的统一目标,而且这些攻击依赖于手工制作的提示,这使得对提示注入稳健性的全面评估变得复杂。原创 2024-06-23 00:07:43 · 44 阅读 · 0 评论 -
LARGE LANGUAGE MODELS FOR CROWD DECISION MAKING BASED ON PROMPT DESIGN STRATEGIES USING CHATGPT
社交媒体和互联网有潜力被用作丰富决策解决方案的意见来源。群体决策(CDM)是一种能够通过情绪分析从纯文本(如社交媒体平台上发布的评论)中推断意见和决策的方法。目前,大型语言模型(LLM)的出现和潜力促使我们探索自动理解书面文本的新场景,也称为自然语言处理。本文分析了基于提示设计策略的ChatGPT的使用,以帮助CDM过程提取意见和做出决策。我们将ChatGPT集成到CDM过程中,作为一种灵活的工具来推断文本中表达的意见,在决策模型基于提示设计策略的情况下提供数字或语言评估。原创 2024-06-22 11:20:38 · 46 阅读 · 0 评论 -
PCToolkit: A Unified Plug-and-Play Prompt Compression Toolkit of Large Language Models
提示压缩是一种创新的方法,可以有效地压缩输入提示,同时保留基本信息。为了促进快速启动服务、用户友好的界面以及与常见数据集和指标的兼容性,我们推出了提示压缩工具包(PCToolkit)。该工具包是一个统一的即插即用解决方案,用于压缩大型语言模型(LLM)中的提示,具有尖端的提示压缩器、不同的数据集和用于全面性能评估的指标。PCToolkit拥有模块化设计,允许通过便携式和用户友好的界面轻松集成新的数据集和指标。在本文中,我们概述了PCToolkit的关键组件和功能。原创 2024-06-15 22:47:54 · 52 阅读 · 0 评论 -
ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting
思维链提示可以增强大型语言模型的推理能力,成为解决复杂推理任务的主要方法。现有的CoT合成方法通常侧重于更简单的推理任务,从而导致低质量和不一致的CoT提示。为了应对这一挑战,我们对CoT提示进行了实证研究,并介绍了CoTGenius,这是一种用于自动生成高级CoT提示的新框架。CoTGenius是基于三种主要的进化策略开发的,即复杂化、多样化和特定化,以及两种过滤机制:进化成功判断和正确性验证。原创 2024-06-07 22:34:44 · 179 阅读 · 0 评论 -
Role Prompting Guided Domain Adaptation with General Capability Preserve for Large Language Models
对用于专业应用程序的大型语言模型(LLM)的兴趣日益增长,这揭示了一个重大挑战:当针对特定领域进行定制时,LLM往往会经历灾难性的遗忘,损害其一般功能,并导致次优的用户体验。此外,由于域之间的混淆,同时为多个域创建通用模型往往会导致整体性能下降。针对这些问题,我们提出了RolE提示引导多领域适应(REGA)策略。这种新方法通过三个关键组成部分有效地管理多域LLM自适应:1)自蒸馏构建和重放一般域样本,以缓解灾难性遗忘。原创 2024-05-23 15:54:08 · 58 阅读 · 0 评论 -
Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment
尽管现有的提示方法(如上下文学习和大型语言模型的思维链)取得了重大成就,但它们仍然面临着各种偏见的挑战。传统的去偏方法主要集中在模型训练阶段,包括基于数据增强和基于重加权的方法,其局限性在于解决LLM的复杂偏差。为了解决这些局限性,使用结构因果模型揭示了提示方法背后的因果关系,并提出了一种基于前门调整的新型因果提示方法,以有效减轻LLM的偏差。具体而言,因果干预是通过设计提示来实现的,而无需访问LLM的参数和logits。原创 2024-05-21 11:38:06 · 123 阅读 · 0 评论 -
Large Language Models are Few-shot Generators: Proposing Hybrid Prompt Algorithm
网络攻击的频繁发生,使得webshell攻击与防御逐渐成为网络安全领域的研究热点。然而,由于缺乏公开的基准数据集,以及过度依赖手动定义的webshell转义样本生成规则,导致webshell转义采样生成策略和基于人工智能的webshell检测算法的研究进展缓慢。为了解决webshell样本转义能力较弱、缺乏具有复杂恶意特征的webshell数据集的缺点,并促进webshell检测技术的发展,我们提出了借助大型语言模型生成webshell转义样本的混合提示算法。原创 2024-05-14 10:30:55 · 46 阅读 · 0 评论 -
OpenMedLM: Prompt engineering can out-perform fine-tuning in medical question-answering
背景:LLM越来越有能力完成一系列专业任务,并可用于扩大公平获得医学知识的机会。大多数医学LLM都涉及广泛的微调,利用专门的医学数据和大量的计算能力,因此成本高昂。许多表现最好的LLM都是专有的,其访问权限仅限于极少数研究小组。然而,开源(OS)模型代表了医疗LLM的一个关键增长领域,因为其性能显著提高,并且具有提供医疗保健所需透明度和合规性的内在能力。在这里,我们介绍了OpenMedLM,这是一个提示平台,可在医疗基准上为操作系统LLM提供最先进的(SOTA)性能。方法。原创 2024-05-14 09:59:25 · 286 阅读 · 0 评论 -
Towards Generalist Prompting for Large Language Models by Mental Models
大型语言模型(LLM)在许多任务上都表现出了令人印象深刻的性能。然而,为了实现最佳性能,仍然需要专门设计的提示方法。这些方法要么依赖于需要一定水平的领域知识的特定任务的小样本示例,要么设计得很简单,但只在少数类型的任务中表现良好。在这项工作中,我们试图引入通才提示的概念,它的设计原则是在广泛的任务中实现最佳或接近最佳的性能,同时消除了手动选择和定制针对特定问题的提示的需要。此外,我们提出了MeMo(心理模型),这是一种创新的提示方法,设计简单,但有效地满足了广义提示的标准。原创 2024-05-10 11:24:53 · 54 阅读 · 0 评论 -
Decomposed Prompting: Unveiling Multilingual Linguistic Structure Knowledge in English-Centric LLMs
尽管英语在训练数据中占主导地位,但GPT-3和LLaMA等以英语为中心的大型语言模型(LLM)在执行多语言任务方面表现出了非凡的能力,这引发了人们对其跨语言能力的深度和性质的质疑。本文介绍了分解提示法来探究序列标注任务中这些LLM的语言结构理解。与单一的文本-文本提示不同,我们的方法为输入句子的每个token生成一个单独的提示,要求提供其语言标签。我们在38种语言的通用依赖词性token数据集上评估了我们的方法,同时使用了以英语为中心和多语言LLM。原创 2024-05-09 17:07:28 · 80 阅读 · 0 评论 -
Unleashing the Potential of Large Language Models as Prompt Optimizers
自动提示优化是提高大型语言模型(LLM)性能的一种重要方法。最近的研究证明了使用LLM作为提示优化器的潜力,它可以通过迭代细化生成改进的任务提示。在本文中,我们通过与基于梯度的模型优化器进行类比,提出了一种新的视角来研究基于LLM的提示优化器的设计。为了将这两种方法联系起来,我们确定了模型参数学习中的两个关键因素:更新方向和更新方法。针对这两个方面,我们借鉴了基于梯度优化的理论框架和学习方法,为基于LLM的提示优化器设计了改进的策略。原创 2024-05-07 10:15:32 · 214 阅读 · 0 评论 -
LSTPrompt: Large Language Models as Zero-Shot Time Series Forecasters by Long-Short-Term Prompting
时间序列预测(TSF)在现实世界中有着广泛的应用。提示脱离搁置的大型语言模型(LLM)展示了强大的零样本TSF功能,同时保持了计算效率。然而,现有的提示方法将TSF过于简化为语言下一个表征预测,忽略了其动态性质,并且缺乏与最先进的提示策略(如思想链)的集成。因此,我们提出了LSTPrompt,这是一种在零样本TSF任务中提示LLM的新方法。LSTPrompt将TSF分解为短期和长期预测子任务,并为每个任务定制提示。LSTPrompt指导LLM定期重新评估预测机制,以增强适应性。原创 2024-04-30 13:21:14 · 60 阅读 · 0 评论 -
Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based LLM
任务嵌入是一种捕捉特定任务信息的元学习技术,已经变得普遍,尤其是在多任务学习、模型编辑和可解释性等领域。然而,随着以无梯度方式操作的提示引导大型语言模型(LLM)的出现,它面临着挑战。现有的任务嵌入方法依赖于微调的、特定于任务的语言模型,这阻碍了任务嵌入在不同模型中的适应性,尤其是基于提示的LLM。为了在LLM时代释放任务嵌入的力量,我们提出了一个统一任务嵌入(FUTE)框架,在单个向量空间内协调来自各种模型的任务嵌入,包括较小的语言模型和具有不同提示的LLM。原创 2024-04-30 10:45:09 · 34 阅读 · 0 评论 -
LSTPrompt: Large Language Models as Zero-Shot Time Series Forecasters by Long-Short-Term Prompting
时间序列预测(TSF)在现实世界中有着广泛的应用。提示脱离搁置的大型语言模型(LLM)展示了强大的零样本TSF功能,同时保持了计算效率。然而,现有的提示方法将TSF过于简化为语言下一个表征预测,忽略了其动态性质,并且缺乏与最先进的提示策略(如思想链)的集成。因此,我们提出了LSTPrompt,这是一种在零样本TSF任务中提示LLM的新方法。LSTPrompt将TSF分解为短期和长期预测子任务,并为每个任务定制提示。LSTPrompt指导LLM定期重新评估预测机制,以增强适应性。原创 2024-04-27 21:51:14 · 185 阅读 · 0 评论 -
Boosting the Safety of Instruction-Tuned Large Language Models with Reverse Prompt Contrastive
随着指令调优大型语言模型(LLM)的发展,提高LLM的安全性变得更加重要。然而,当前将LLM输出与预期安全性相一致的方法通常需要大量的训练工作,例如高质量的安全数据和昂贵的计算资源,这是昂贵且低效的。为此,我们提出了反向prOmpt contrasstive dEcoding(ROSE),这是一种简单而有效的方法,可以在没有任何额外训练的情况下直接提高现有指令调整LLM的安全性。ROSE的原理是通过抑制由精心设计的反向提示引起的不希望的输出来提高期望的安全输出的概率。原创 2024-04-23 19:35:41 · 67 阅读 · 0 评论 -
PhaseEvo: Towards Unified In-Context Prompt Optimization for Large Language Models
为大型语言模型(LLM)制作一个理想的提示是一项具有挑战性的任务,需要大量的资源和专家的人力投入。现有工作将提示指令的优化和上下文学习示例视为不同的问题,导致次优的提示表现。本研究通过建立一个统一的上下文提示优化框架来解决这一局限性,该框架旨在实现提示指令和示例的联合优化。然而,在离散和高维的自然语言空间中制定这样的优化方案在收敛性和计算效率方面带来了挑战。为了克服这些问题,我们提出了PHASEVO,这是一个有效的自动提示优化框架,它将LLM的生成能力与进化算法的全局搜索能力相结合。原创 2024-04-10 10:04:50 · 63 阅读 · 0 评论 -
Prompt4Vis: Prompting LLMs with Example Mining and Schema Filtering for Tabular Data Visualization
数据可视化(DV)系统因其从庞大的数据集中揭示见解的深刻能力而越来越受到认可,在工业界和学术界都引起了关注。在某些声明性可视化语言(DVL,例如Vega-Lite、EChart.)中,制作数据查询是一个必不可少的过程。自然语言处理(NLP)技术的发展简化了自然语言界面的使用,使表格数据可视化,提供了更易于访问和直观的用户体验。然而,当前将自然语言问题转换为数据可视化查询的方法,如Seq2Vis、ncNet和RGVisNet,尽管使用了复杂的神经网络架构,但仍达不到预期,还有很大的改进空间。原创 2024-04-04 09:12:12 · 139 阅读 · 0 评论 -
Embedding Large Language Models into Extended Reality
计算机图形、硬件、人工智能(AI)和人机交互的最新发展可能会导致扩展现实(XR)设备和设置更加普及。虽然这些设备和设置为用户提供了具有不同感知模式(如眼睛和手跟踪器)的交互式、引人入胜和身临其境的体验,但许多非玩家角色是以预先编写脚本的方式或通过传统的人工智能技术使用的。在本文中,我们主张在XR中使用大型语言模型(LLM),方法是将其嵌入虚拟化身或作为叙事,通过根据用户档案进行提示工程,并为特定目的微调LLM,以促进更具包容性的体验。我们认为,这种包容性将促进XR使用的多样性。原创 2024-04-03 11:27:38 · 40 阅读 · 0 评论 -
A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications
提示工程已经成为扩展大型语言模型(LLM)和视觉语言模型(VLM)功能的一种不可或缺的技术。这种方法利用特定任务的指令,即提示,在不修改核心模型参数的情况下提高模型功效。提示不是更新模型参数,而是通过仅基于给定提示引发所需的模型行为,将预先训练的模型无缝集成到下游任务中。提示可以是提供上下文以指导模型的自然语言指令,也可以是激活相关知识的学习向量表示。这一新兴领域已经在从问答到常识推理的各种应用程序中取得了成功。然而,对各种快速工程方法和技术仍然缺乏系统的组织和理解。原创 2024-03-29 15:51:03 · 225 阅读 · 0 评论 -
The Unreasonable Effectiveness of Eccentric Automatic Prompts
大型语言模型(LLM)已经显示出非凡的解决问题和基本数学能力。然而,它们的功效在很大程度上取决于提示的形成。本研究试图量化将“积极思维”纳入提示的系统信息的影响,并将其与系统提示优化进行比较。我们在GSM8K数据集上评估了60种系统消息片段组合的性能,这些组合在有思维链提示和没有思维链提示的情况下进行了测试,涉及三个参数从70亿到700亿不等的模型。我们的研究结果表明,结果并不能在模型中普遍推广。在大多数情况下,“积极思考”的加入会促使受到积极影响的模型性能。原创 2024-03-13 13:51:12 · 99 阅读 · 0 评论 -
Exploring the Limitations of Graph Reasoning in Large Language Models
经过预训练的大型语言模型仅通过基于语言的提示就展示了各种类型的推理能力。然而,在本文中,我们通过图推理的问题来测试5种不同LLM(GPT-4、GPT-3.5、Claude-2、Llama-2和Palm-2)的图推理深度。特别地,我们设计了10个不同的图遍历问题,每个问题都代表着不断增加的复杂性。此外,我们分析了模型在各种设置下的性能,如不同大小的图以及不同形式的kshot提示。原创 2024-03-11 10:14:20 · 144 阅读 · 0 评论 -
Are Large Language Models Good Prompt Optimizers?
基于LLM的自动提示优化通常利用LLM作为提示优化器来自我反映和细化提示,在最近的研究中显示出了良好的性能。尽管取得了成功,但这种方法的潜在机制仍未被探索,LLM作为提示优化工具的真正有效性需要进一步验证。在这项工作中,我们进行了全面的研究,以揭示基于LLM的提示优化的实际机制。我们的研究结果表明,LLM优化器在反思过程中很难确定错误的真正原因,倾向于被他们自己的先验知识所偏见,而不是真正反思错误。原创 2024-03-08 14:23:41 · 50 阅读 · 0 评论 -
AN EMPIRICAL CATEGORIZATION OF PROMPTING TECHNIQUES FOR LARGE LANGUAGE MODELS
由于大型语言模型(LLM)开发的快速发展,最近用提示对这些模型进行编程引起了极大的关注。然而,大量可用的提示工程技术为希望使用这些工具的从业者创造了压倒性的前景。为了最有效地使用LLM,编制一份全面的提示技术清单并建立一个标准化的跨学科分类框架是很重要的。在这项调查中,我们从学术和实践的角度研究了一些最著名的提示技术,并将其分为七类。我们对每个类别进行了概述,旨在阐明它们的独特贡献,并在现实世界的例子中展示它们的实际应用,以便为同行提供一个结构化的框架,用于理解和分类适合其特定领域的提示技术。原创 2024-03-07 09:15:13 · 54 阅读 · 0 评论