TASKBENCH: BENCHMARKING LARGE LANGUAGE MODELS FOR TASK AUTOMATION

828 篇文章 3 订阅

已下架不支持订阅

TASKBENCH是评估大型语言模型(LLM)在任务自动化能力的基准,涵盖任务分解、工具调用和参数预测。通过引入工具图和反指令方法生成评估数据集,TASKEVAL则从多个维度评估LLM性能,展示出与人工评估的高度一致性。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《TASKBENCH: BENCHMARKING LARGE LANGUAGE MODELS FOR TASK AUTOMATION》的翻译。

TASKBENCH:为任务自动化测试大型语言模型

摘要

最近,大型语言模型(LLM)的惊人进展点燃了任务自动化的火花,它将用户指令描述的复杂任务分解为子任务,并调用外部工具来执行,并在自主代理中发挥核心作用。然而,缺乏一个系统化和标准化的基准来促进LLM在任务自动化中的发展。为此,我们引入TASKBENCH来评估LLM在任务自动化中的能力。具体来说,任务自动化可以分为三个关键阶段:任务分解、工具调用和参数预测,以实现用户意图。与常见的NLP任务相比,这种复杂性使数据收集和评估更具挑战性。为了生成高质量的评估数据集,我们引入了工具图的概念来表示用户意图中的分解任务,并采用反指令方法来模拟用户指令和注释。此外,我们提出了TASKEVAL来从不同方面评估LLM的能力,包括任务分解、工具调用和参数预测。实验结果表明,TASKBENCH可以有效地反映LLM在任务自动化中的能力。得益于自动化数据构建和人工验证的混合,TASKBENCH与人工评估相比实现了高度的一致性,可以作为基于LLM的自主代理的全面而可靠的基准。

1 引言

2 TASKBENCH数据集

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值