本文是LLM系列文章,针对《TASKBENCH: BENCHMARKING LARGE LANGUAGE MODELS FOR TASK AUTOMATION》的翻译。
TASKBENCH:为任务自动化测试大型语言模型
摘要
最近,大型语言模型(LLM)的惊人进展点燃了任务自动化的火花,它将用户指令描述的复杂任务分解为子任务,并调用外部工具来执行,并在自主代理中发挥核心作用。然而,缺乏一个系统化和标准化的基准来促进LLM在任务自动化中的发展。为此,我们引入TASKBENCH来评估LLM在任务自动化中的能力。具体来说,任务自动化可以分为三个关键阶段:任务分解、工具调用和参数预测,以实现用户意图。与常见的NLP任务相比,这种复杂性使数据收集和评估更具挑战性。为了生成高质量的评估数据集,我们引入了工具图的概念来表示用户意图中的分解任务,并采用反指令方法来模拟用户指令和注释。此外,我们提出了TASKEVAL来从不同方面评估LLM的能力,包括任务分解、工具调用和参数预测。实验结果表明,TASKBENCH可以有效地反映LLM在任务自动化中的能力。得益于自动化数据构建和人工验证的混合,TASKBENCH与人工评估相比实现了高度的一致性,可以作为基于LLM的自主代理的全面而可靠的基准。