本文是LLM系列文章,针对《Machine Mindset: An MBTI Exploration of Large Language Models》的翻译。
摘要
我们提出了一种将Myers-Briggs类型指标(MBTI)人格特征集成到大型语言模型(LLM)中的新方法,以应对个性化人工智能中人格一致性的挑战。我们的方法“机器思维”包括两阶段微调和直接偏好优化(DPO),以将MBTI特征嵌入LLM中。这种方法确保模特将这些特质内化,提供稳定一致的个性特征。我们展示了我们的模型在各个领域的有效性,显示了模型性能与其各自的MBTI特征之间的一致性。该论文强调了在LLM中个性集成的个性数据集和新的训练方法的开发方面的重大贡献,增强了个性化人工智能应用的潜力。我们还开源了我们的模型和部分数据https://github.com/PKU-YuanGroup/Machine-Mindset。
1 引言
2 相关工作
3 方法
4 实验和结果
5 结论
在本文中,我们探索了大型语言模型&#x