Visual Hallucinations of Multi-modal Large Language Models

828 篇文章 3 订阅

已下架不支持订阅

28 篇文章 0 订阅
本文介绍了VHTest工具,用于生成多模态大型语言模型在视觉问答中产生的视觉幻觉实例。通过该工具,研究人员发现即使是最先进的模型如GPT-4V、LLaVA-1.5和MiniGPT-v2也会产生幻觉。通过微调,可以减少幻觉而不会损害模型的其他性能。VHTest基准数据集已在GitHub上公开,未来目标是实现完全自动化。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Visual Hallucinations of Multi-modal Large Language Models》的翻译。

摘要

视觉幻觉(VH)是指多模态LLM(MLLM)在视觉问答中想象图像的错误细节。现有研究仅在现有图像数据集中发现VH实例,由于此类VH实例的多样性有限,导致对MLLM在VH下的性能理解存在偏差。在这项工作中,我们提出了一种称为VHTest的工具来生成一组不同的VH实例。具体而言,VHTest在现有图像数据集中找到一些初始VH实例(例如,COCO),为每个VH模式生成文本描述,并使用文本到图像生成模型(例如,DALL·e-3)基于文本描述生成VH图像。我们使用VHTest收集了一个基准数据集,其中包含8种VH模式下的1200个VH实例。我们发现,现有的MLLM,如GPT-4V、LLaVA-1.5和MiniGPT-v2,在我们的基准测试中的很大一部分实例中会产生幻觉。此外,我们发现使用我们的基准数据集对MLLM进行微调可以降低其产生幻觉的可能性,而不会牺牲其在其他基准测试上的性能。我们的基准在https://github.com/wenhuang2000/VHTest公开可用。

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值