Evolutionary Optimization of Model Merging Recipes

828 篇文章

已下架不支持订阅

本文提出了一种进化算法,用于自动创建强大的基础模型,通过优化不同开源模型的组合,无需大量额外数据或计算。实验结果显示,这种方法生成的日本数学LLM和文化意识的日本VLM在多个基准上表现优异,超越了参数更多的模型,开辟了自动化模型组合的新范式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Evolutionary Optimization of Model Merging Recipes》的翻译。

摘要

我们提出了一种进化算法的新应用,以自动创建强大的基础模型。虽然由于其成本效益,模型合并已成为LLM开发的一种很有前途的方法,但它目前依赖于人类的直觉和领域知识,限制了其潜力。在这里,我们提出了一种进化方法,通过自动发现各种开源模型的有效组合,利用它们的集体智慧,而不需要大量额外的训练数据或计算,来克服这一限制。我们的方法在参数空间和数据流空间中运行,允许优化超出单个模型的权重。这种方法甚至有助于跨领域合并,生成具有数学推理功能的模型,如日本LLM。令人惊讶的是,我们的日本数学LLM在各种已建立的日本LLM基准上实现了最先进的性能,甚至超过了参数明显更多的模型,尽管没有针对此类任务进行明确的训练。此外,通过我们的方法生成的具有文化意识的日本VLM证明了其在描述日本文化特定内容方面的有效性,优于以前的日本VLM。这项工作不仅为开源社区贡献了新的最先进的模型,还引入了一种新的自动化模型组合范式,为探索替代的、高效的基础模型开发方法铺平了道路。

1 引言

2 背景和相关工作

3 方法

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值