本文是LLM系列文章,针对《Large Language Model Agent for Hyper-Parameter Optimization》的翻译。
摘要
超参数优化在现代机器学习中至关重要,需要专家知识、大量试验以及高计算和人力资源。尽管自动机器学习(AutoML)取得了进步,但在试验效率、设置复杂性和互操作性方面的挑战仍然存在。为了解决这些问题,我们引入了一种新的范式,利用大型语言模型(LLM)在不同的机器学习任务中自动进行超参数优化,称为AgentHPO(LLM-Agent based hyperparameter optimization的缩写)。具体而言,AgentHPO自主处理任务信息,用特定的超参数(HP)进行实验,并基于历史试验对其进行迭代优化。与传统的AutoML方法相比,这种类似人类的优化过程大大减少了所需的试验次数,简化了设置过程,并增强了可解释性和用户信任。在12个具有代表性的机器学习任务上进行的大量实证实验表明,AgentHPO不仅在性能方面与最佳人体试验相匹配,而且往往超过最佳人体试验,同时提供了可解释的结果。进一步的分析揭示了LLM在优化这些任务时所采用的策略,突出了其在各种场景中的有效性和适应性。