Large Language Model Agent for Hyper-Parameter Optimization

828 篇文章 3 订阅

已下架不支持订阅

71 篇文章 0 订阅
本文介绍了一种使用大型语言模型(LLM)进行超参数优化的新方法——AgentHPO,它减少了试验次数,简化设置,增强可解释性,并在多个机器学习任务上表现出与甚至超过最佳人类试验的性能。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Large Language Model Agent for Hyper-Parameter Optimization》的翻译。

摘要

超参数优化在现代机器学习中至关重要,需要专家知识、大量试验以及高计算和人力资源。尽管自动机器学习(AutoML)取得了进步,但在试验效率、设置复杂性和互操作性方面的挑战仍然存在。为了解决这些问题,我们引入了一种新的范式,利用大型语言模型(LLM)在不同的机器学习任务中自动进行超参数优化,称为AgentHPO(LLM-Agent based hyperparameter optimization的缩写)。具体而言,AgentHPO自主处理任务信息,用特定的超参数(HP)进行实验,并基于历史试验对其进行迭代优化。与传统的AutoML方法相比,这种类似人类的优化过程大大减少了所需的试验次数,简化了设置过程,并增强了可解释性和用户信任。在12个具有代表性的机器学习任务上进行的大量实证实验表明,AgentHPO不仅在性能方面与最佳人体试验相匹配,而且往往超过最佳人体试验,同时提供了可解释的结果。进一步的分析揭示了LLM在优化这些任务时所采用的策略,突出了其在各种场景中的有效性和适应性。

1 引言

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值